

SD224078, Version 2

Creating Add-Ins for Inventor

Brian Ekins
Ekins Solutions, LLC
brian@EkinsSolutions.com

Description

While Inventor software’s VBA and iLogic provide a convenient and easy way to add custom
functionality to Inventor, there are limitations to what you can do with VBA macros and iLogic
rules. This class will introduce you to VB.NET and Inventor add-ins and the pros and cons of
add-ins compared to VBA and iLogic. In this class, you'll learn the technical differences between
VBA, iLogic, add-ins, and external EXEs, and some of the reasons you would choose one over
the other. The class will cover how to create an add-in using an easier-to-use custom VB.NET
template. We'll look at the differences between VBA code and VB add-in code and how to
convert your existing VBA macros and iLogic rules into add-in commands. We'll also cover how
to debug your add-in. Finally, we'll look at how to package and distribute your add-in to make it
easy for others to use. This is an intermediate level class and you should have a basic
understanding of the Inventor API.

Speaker(s)

CAD has been a passion of mine ever since I saw a demonstration of an Applicon system
during a high school field trip back in 1977. My experience in the industry since then has been
varied. I’ve developed and taught training classes, both on modeling and programming. I’ve
worked as an Application Engineer where I specialized in complex modeling and customization
of the software and I demonstrated the software and performed benchmarks to show customers
that the software could do what they need. When Intergraph began developing Solid Edge I
moved from the role of a modeler and API user to an API designer. I then moved to Autodesk
where I designed the API for Inventor and most recently, I’ve been designing the API for Fusion
360. Now I run my own consulting/contracting business where I help Inventor and Fusion 360
users make Inventor and Fusion 360 into a customized tool specific to their needs. Contact me
if you need help with your use of the software. https://EkinsSolutions.com

Learning Objectives

• Discover when an add-in is the best option.

• Learn how to convert existing VBA and iLogic code into an add-in command.

• Learn how to debug an add-in.

• Learn how to package and distribute your add-in.

https://ekinssolutions.com/

Creating Add-Ins for Inventor Page 1

Table of Contents
Introduction ... 2

What is an API? ... 2

Tools for Programming Inventor ... 3

VBA (Visual Basic for Applications) .. 3

iLogic ... 3

EXE Macros .. 4

Add-Ins .. 5

Visual Studio ... 6

Visual Studio Professional (https://visualstudio.microsoft.com/vs/professional/) 7

Visual Studio Community (https://visualstudio.microsoft.com/vs/community/).................................... 7

Visual Studio Express (https://visualstudio.microsoft.com/vs/express/) ... 7

Visual Studio Code (https://code.visualstudio.com/).. 7

Creating an Add-In .. 8

Templates.. 8

Standard Add-In Template ... 8

Nifty Add-In Template .. 8

Creating your Add-In .. 8

Editing the Appearance of Your Add-In .. 12

Editing the Behavior of Your Add-In ... 14

Defining the Name and Icon of the Command .. 14

Positioning Your Button .. 17

Reacting to a Button Click .. 20

Writing the Command Code ... 21

Converting iLogic Programs ... 21

Converting VBA Programs ... 22

Cool stuff in Visual Basic .NET ... 26

Creating Forms .. 26

Debugging Your Add-In ... 27

Debugging With Visual Studio Community and Professional .. 27

Debugging with Visual Studio Express ... 28

What Happens When You Compile Your Add-In? .. 28

Deploying Your Add-In ... 30

Method 1 – Copy the Folder ... 30

Method 2 – Create an Installer ... 30

Updating Your Add-In to a New Version of Inventor ... 38

Creating Add-Ins for Inventor Page 2

Introduction
Before writing this paper, I polled the people who will be attending the AU class and asked them
a few questions. Out of the respondents, I found out that a large percentage are not currently
writing programs for Inventor so although this topic is a more advanced Inventor API topic, I
want to give those of you that are new to Inventor programming some background and other
resources to help you get started and to be able to understand the rest of the paper.

What is an API?
An “Application Programming Interface” or “API” for short, is something that an application
supports that allows you to control it using a program. Everyone is familiar with graphical user
interfaces. For example, in Inventor you have the graphics windows where you view your model
and you have the ribbon and context menu where you can find specific commands and run
them. When a command is running, you interact with the dialog to specify various options and
select items in the graphics windows to specify geometric input and then you complete the
command to make changes to the model.

In a graphical user interface, you specify that you want to perform an operation by starting the
appropriate command. You then provide the information that the command requires by selecting
options in the dialog and choosing geometry, and then you finish the operation by completing
the command.

A programming interface is conceptually the same but instead of running a command and
choosing options in a dialog or selecting geometry in the graphics window you instead call a
programming function that is the equivalent of the command. You provide the same kind of input
to the function that the command requires. For
example, you provide values to indicate the values
of the settings and you provide the geometry that
you obtained using other functions in the API.
When the function executes, it results in the same
result as the command. In fact, internally the
command and the API function end up calling the
same internal function to create the desired result.

The rest of this paper assumes you have a basic
understanding of Inventor’s API, but if you don’t
you can get some basic information in the Inventor
Help where’s there’s a section specifically for the
API, as shown to the right.

http://help.autodesk.com/view/INVNTOR/2018/ENU/?guid=GUID-4939ABD1-A15E-473E-9376-D8208EC029EB
http://help.autodesk.com/view/INVNTOR/2018/ENU/?guid=GUID-4939ABD1-A15E-473E-9376-D8208EC029EB

Creating Add-Ins for Inventor Page 3

Tools for Programming Inventor
Before digging into the details of add-ins, let’s first look at the various ways you can access
Inventor’s API and the pros and cons of each. Even before that, let me say that Inventor
exposes its API using some Microsoft technology called COM (Component Object Model). It’s
not important to understand what this is but its good to understand that it is exposed using this
generic technology. Because of this, it’s possible to use any programming language that
supports COM. It’s also useful because this is also how many other applications expose their
API’s. For example, Word, Excel, Visio, Solidworks, Solid Edge, and many others use this same
technology. This means that much of what you learn programming one is transferrable when
programming another.

VBA (Visual Basic for Applications)
VBA is built into Inventor and provides a very good development environment for writing
programs that work with the Inventor API. VBA was designed to program COM interfaces and
because of that, it does provide the best integration.

Pros:

• Free and included with Inventor

• Good editor with Intellisense and code completion

• The best debugging

• The best object browser

• Can create custom dialogs

• Most of the online help samples are VBA code

• In context API help

Cons:

• Based on old VB 6 technology

• Limited dialog creation

• Difficult to incorporate into Inventor user interface

• Cannot use Apprentice

• Difficult to respond to events

• Practically, it’s limited to macro creation

• Usually executed from the Macros dialog

• Difficult to share with others

iLogic
iLogic is a tool that’s delivered with Inventor that was originally designed to allow easy
configuration of parts. You can create “rules”, which are basically programs that modify
parameters and the suppression state of features to result in part configuration. You can easily
define the inputs for a part and iLogic creates a form to let the user edit those values and then
modifies the part. To use some of this basic functionality you don’t even need to write any code.

For this basic type of functionality, it’s difficult to beat iLogic. To create more complicated rules,
iLogic provides a code editor and supports some iLogic specific functions that are intended to

Creating Add-Ins for Inventor Page 4

make it simpler to use than the Inventor API. However, it’s also possible to access the complete
Inventor API from within an iLogic rule. What’s happened is that people started writing simple
iLogic rules but needed more functionality and started incorporating the Inventor API into their
rules. Many people are now writing pure Inventor API programs as iLogic rules. This works but it
also means you must deal with all the cons of iLogic. The pros and cons list below is with
respect to using iLogic as a general programming environment for the Inventor API.

Pros:

• Free and included with Inventor

• Uses the new .NET based languages and libraries

• Easy to listen to and respond to events

• Simplified tools for configuring parts

Cons:

• Poor editing

• No interactive debugging

• No object browser

• Cannot use Apprentice

• Limited to macro creation or responding to iLogic supported events

• Usually executed from the iLogic browser

• Difficult to share with others

EXE Macros
This is a very old concept that I’ve updated to make more user-friendly. It’s always been
possible to write an executable (EXE) program that can use the Inventor API. You create the
EXE and then from Windows Explorer run the EXE and it connects to and drives Inventor using
the API. The big advantage with an EXE macro is that you can use Visual Studio to write it. The
problem with creating EXE’s is that you need to run them from Windows Explorer. You can’t
easily add new buttons into the user interface.

My new “Nifty EXE Macro” capability lets you create EXE’s in the same way they’ve always
been created but then lets you easily create buttons in the Inventor user interface to execute
them. You can define the icon for the button, the tooltip, the description, and even the picture
that’s displayed for the extended tooltip. And it’s not limited to EXE’s that use the Inventor API,
but you can create buttons that will run any EXE. For example, you can create a button to open
the Calculator program or Notepad, as shown below. For more information about EXE Macros,
visit my website at https://EkinsSolutions.com.

https://ekinssolutions.com/

Creating Add-Ins for Inventor Page 5

Writing an EXE is much easier than writing an add-in but because it uses the same technology
(Visual Studio), it is a great way to start using the API and to eventually creating add-ins.

Pros:

• Uses Visual Studio

• Uses the new .NET based languages and libraries

• Easy to add a button into user-interface

• Can use Apprentice

• Can easily be shared with others

• Can use any language that supports COM

Cons:

• Must install and license Visual Studio

• Practically, it’s limited to macro creation

• Can use events but not good for most Inventor events

• Slower performance because of running out-of-process

Add-Ins
Now, we’re finally getting to the main topic of Add-Ins. All the programming methods described
so far have full access to Inventor’s API. Some provide better or easier access to certain parts
of the API, (primarily events and Apprentice), but all of them are using the same Inventor API
and as a result, can do the same things inside Inventor. The big difference between them from
the developer’s perspective is how easy it is to write that code. The big difference between them
from the end user's perspective is how easy it is to access the functionality that the program
provides and if it works as expected.

The big thing that an add-in provides is the ability to provide easy, intuitive access to the
commands it provides. Add-Ins do this by being started automatically by Inventor when Inventor
is started. As part of the start-up process, an add-in adds buttons for its commands into the
Inventor user interface. The add-in continues to run throughout the entire Inventor session but
it’s just sitting quietly in the background waiting to respond when one of its command buttons is
clicked by the user. Once a command is clicked then there’s not much, if any, difference
between the code that would be written for iLogic or an EXE Macro.

To the end-user, commands provided through an add-in appear to be standard Inventor
commands. For example, iLogic is an add-in and so is Tube and Pipe, Cable and Harness, and
Frame Generator. All these programs use the Inventor API to provide access to their commands
and for their interaction with Inventor and they appear to be a core part of Inventor.

Because they’re loaded when Inventor starts and continue to run in the background, they’re also
the best solution when you have an event-driven program. When they’re loaded they can
connect to the events of interest and then react accordingly when Inventor calls them when that
event is triggered.

Like an EXE, you’re compiling your add-in to create code that is executed at runtime. However,
with an add-in, you’re creating a DLL which is loaded into the Inventor process and run.

Creating Add-Ins for Inventor Page 6

Pros:

• Uses Visual Studio

• Uses the new .NET based languages and libraries

• Best at adding commands anywhere in the user interface (ribbon, context
menu, toolbars, etc.)

• Best at being able to use all the events supported by the Inventor API

• Can be easily shared with others

• Can use any language that supports COM

Cons:

• Must install and license Visual Studio

• More complicated to develop

• Cannot use Apprentice

Visual Studio
For creating an EXE or an add-in you need to install and use Visual Studio. Visual Studio
provides the best code editing experience of any of the Inventor programming solutions with the
following features:

Code Editing
Visual Studio is easily the best development environment of the programming
environments listed above. The thing that you’ll quickly appreciate and deeply
miss in most other development environments is what Microsoft calls
“Intellisense”. It’s a code-completion aid that shows you viable options and enters
the code for you.

Interactive Error Handling
As you write your program, Visual Studio is constantly checking for errors and
displays them by highlighting your code and providing more detailed information
in the “Error List” window.

Debugging
The debugging isn’t quite as good as VBA but is still very good.

Object Browser
Here again, the Object Browser isn’t quite as good as VBA, but Visual Studio still
provides an Object Browser to let you view the objects, methods, and properties
provided by Inventor’s API.

Form Development
Visual Studio provides the best tools for creating custom dialogs. You can
develop dialogs using Windows Forms or the newer Windows Presentation
Foundation (WPF).

Visual Studio is one of Microsoft’s Integrated Development Environments (IDE). There are
different versions of Visual Studio and they all support several different languages (Visual Basic,

Creating Add-Ins for Inventor Page 7

C#, C++, etc.). Here’s a brief description of each type of Visual Studio to help you understand
what’s available and what might be the best fit for you.

Visual Studio Professional (https://visualstudio.microsoft.com/vs/professional/)

This is the version that most professional developers are using. It supports everything that’s
needed to create an add-in. It’s purchased from Microsoft and is licensed so you can sell the
software that you write. The full retail price for a license of Visual Studio Professional is
$499.

Visual Studio Community (https://visualstudio.microsoft.com/vs/community/)
This is a version that was introduced by Microsoft a few years ago. It has the same
capabilities as Visual Studio Professional, but it is free. However, with free also comes a
limited license. Here’s who can use it for free as quoted straight from Microsoft’s website.

Individuals - Any individual developer can use Visual Studio Community to
create their own free or paid apps.

Organizations – An unlimited number of users within an organization can use
Visual Studio Community for the following scenarios: in a classroom learning
environment, for academic research, or for contributing to open source projects.

For all other usage scenarios:
In non-enterprise organizations, up to five users can use Visual Studio
Community. In enterprise organizations (meaning those with >250 PCs or >$1
Million US Dollars in annual revenue), no use is permitted beyond the open
source, academic research, and classroom learning environment scenarios
described above.

Visual Studio Express (https://visualstudio.microsoft.com/vs/express/)
Visual Studio Express is also free but instead of having a restricted license, it has restricted
capabilities. This means anyone, including someone that is part of an enterprise organization,
can install and use Visual Studio Express to create free or paid apps. If you don’t qualify for the
Community version, Express is a great option. However, Microsoft is saying that Visual Studio
Express 2017 will be the last version and then will be discontinued. After that, you’ll need to use
either the Community or Professional version.

Visual Studio Express does have a few limitations and unfortunately, these limitations do affect
creating add-ins, but they can be worked around so it is possible to still create add-ins. The
limitations and workarounds will be described in this paper.

Visual Studio Code (https://code.visualstudio.com/)
You might hear about one other Visual Studio variant called Visual Studio Code. It’s a new open
source multi-platform development environment. It’s most commonly used for web development
but can be used for other types of development too. However, it currently doesn’t support Visual
Basic or the capabilities needed to write an Inventor add-in.

https://visualstudio.microsoft.com/vs/professional/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/express/
https://code.visualstudio.com/

Creating Add-Ins for Inventor Page 8

Creating an Add-In

The add-in code that interacts with Inventor isn’t really any different than the code that would be
written using one of the other ways of accessing the API that were described earlier. However,
there is some additional structure around an add-in that allows it to be found and loaded by
Inventor. It’s all this additional structure and code that can make developing an add-in a bit
daunting, especially for a newer programmer. I would recommend that you start by writing EXE
Macro programs, which can be easily converted into an add-in later, if you decide that will be
better.

Templates
To help create all the required code structure, you can use an add-in template to create the
initial add-in code. There are two different templates, as described below. The rest of this
paper assumes that you're using the second option, the Nifty Add-In Template.

Standard Add-In Template
To get access to the Inventor supplied add-in template you need to install the Inventor
SDK. When you install Inventor, an installer for the Inventor SDK (Software
Development Kit) is also installed but then you need to manually run that installer to
install the SDK. The installer for the SDK is installed in (where XXXX is the version):

C:\Users\Public\Documents\Autodesk\Inventor XXXX\SDK

Inside that folder, run “developertools.msi”. This will install the add-in template for Visual
Basic, C#, and C++ and will also create the DeveloperTools folder in the same directory
above. The DeveloperTools folder contains many samples and tools that are useful when
developing for Inventor.

Nifty Add-In Template
I’ve developed my own add-in template that I believe makes developing an add-in easier
than when using the standard add-in template. My new add-in template can be accessed
on my website at https://EkinsSolutions/apps. The rest of this discussion assumes you’re
using the Nifty Add-In Template.

Creating your Add-In
To create an add-in, you start Visual Studio and run the New Project command from the File
menu, as shown below.

https://ekinssolutions/apps

Creating Add-Ins for Inventor Page 9

In the New Project dialog, choose “Visual Basic” from the “Installed” category on the left and
then choose the “Nifty Add-In Inventor 2018” template. Finally, enter the name (without any
spaces) and the location where the add-in will be created. I’m using “AU_Example” and it can
be located anywhere. If the “Create directory for solution” checkbox is checked, uncheck it and
click OK.

Now, you can build the project to create the DLL for your add-in by running the Build Solution
command in the Build menu as shown below.

Creating Add-Ins for Inventor Page 10

In the “Output” tab at the bottom of Visual Studio, you should see that the build was successful.
If you don’t see the output window, press Ctrl+Alt+O.

Congratulations, you’ve just created your first add-in. Start Inventor to see what happens. If
Inventor is already running, shut it down and start it up again. Inventor has implemented some
security measures to block any unknown add-ins from running. You’ll need to give explicit
permission to allow your add-in to run. When you see the dialog below appear, click OK and let
Inventor finish starting up.

Creating Add-Ins for Inventor Page 11

Once Inventor is up, run the Add-Ins command from the Tools tab in the ribbon. Find your add-
in in the list, select it, and then change the “Load Behavior” settings so “Loaded/Unloaded” and
“Load Automatically” settings are checked, and “Block” is unchecked, as shown below. These
settings are remembered by Inventor, so you only need to do this once for a new add-in.

Because you checked the “Loaded” checkbox, your add-in should have loaded when you
clicked “OK”. You can open the Add-In Manager to
verify that its load behavior is now “Automatic / Loaded”.
Or the best way to verify that the add-in’s user interface
was successfully created is to make sure it is available
in Inventor. The add-in template creates a new
command and adds a button into the Tools tab of the
Part ribbon, as shown to the right. Open any part and
verify that it exists in the Tools tab.

Creating Add-Ins for Inventor Page 12

Running the command displays the message box below.

Editing the Appearance of Your Add-In
The add-in template uses some defaults to define the various
settings of your add-in. You can now change the settings that
control how the user sees your add-in. A requirement of all
add-ins is to have a .addin file. You’ll see it in the “Solutions
Explorer” window in Visual Studio as shown to the right. Click
on it and it will open a window in Visual Studio to allow you to
edit the file. The .addin file is an XML formatted file and its
contents are shown below.

<Addin Type="Standard">
 <!--Created for Autodesk Inventor 2018 (Version 22.0)-->
 <ClassId>{c322e19b-5e98-46c5-bfe1-fe8cd2e4c173}</ClassId>
 <ClientId>{c322e19b-5e98-46c5-bfe1-fe8cd2e4c173}</ClientId>
 <DisplayName>AU_Example</DisplayName>
 <Description>AU_Example</Description>
 <Assembly>AU_Example.dll</Assembly>
 <LoadOnStartUp>1</LoadOnStartUp>
 <UserUnloadable>1</UserUnloadable>
 <Hidden>0</Hidden>
 <SupportedSoftwareVersionGreaterThan>21..</SupportedSoftwareVersionGreaterThan>
 <DataVersion>1</DataVersion>
 <UserInterfaceVersion>1</UserInterfaceVersion>
</Addin>

The ClassId and ClientId elements are the unique identifiers of your add-in. By default, they are
the same as each other and there’s no reason to change them. Each time you create a new
add-in project a new ID is generated so each add-in is unique.

The DisplayName element is the name of the add-in as it is displayed in the Add-In Manager
and the Description element is the description seen in the Add-In Manager. You’ll probably want
to edit these so they’re more user-friendly than the default project name. This is where you can
change the name to include spaces. I’m changing the name to “AU Example Add-In” and the
description to “This is the example add-in for the AU class on Inventor add-ins.”

The Assembly element is the file name of the add-in DLL. By default, it is the file name without
any path. You can specify either the filename using either a full or relative path. My suggestion
is to leave it as-is with just the name of the file. Inventor will find it because it looks for the add-in

Creating Add-Ins for Inventor Page 13

DLL using a relative path with respect to the location of the .addin file. In this case, since the
DLL is in the same directory as the .addin file, Inventor finds it.

The remaining element of interest is the “SupportedSoftwareVersion” element. It defines when
an add-in should be loaded. This element specifies which version(s) of Inventor the add-in is
valid for. In this example, it is being loaded by Inventor 2018 and later. Inventor 2018 is version
22 and this is specifying that the add-in should load for versions later than 21.

You can read more about other version options and some other settings that can be defined in
the .addin file in the Inventor API help topic shown below.

Creating Add-Ins for Inventor Page 14

After rebuilding the project and restarting Inventor, you can see that the add-in now appears in
the Add-In Manager. The name in the list and the description has changed because of editing
the .addin file. The “Publisher” and “Signature” fields in the dialog are outside the scope of this
paper but involve signing the DLL, which is not required.

Editing the Behavior of Your Add-In
You now have a running add-in that shows up correctly in the Add-In Manager but it doesn’t
have the behavior you want. You most likely want the command button to appear in a different
location and have a different icon. And you certainly want it to do something different when you
click the button. Here are the steps to changing each of these.

Defining the Name and Icon of the Command
Before looking at the behavior, let’s look at how to change how the
command looks in the user interface. First, we’ll look at two things that
identify this command; its name and icon. The command’s default name is
“Command Name” and the icon is a default icon showing a hammer and
wrench. To change the name, you’ll need to edit the code that creates the
command.

In the “Solution Explorer” click on “StandardAddInServer.vb” to open that file in Visual Studio.
For an add-in to work, it must implement an interface that Inventor has specified. Basically, this

Creating Add-Ins for Inventor Page 15

means that the add-in must expose an API object and that object must support some specific
functions. When Inventor starts, it looks for all available add-ins (how this is done is discussed
later) and then loads them. As part of the loading, Inventor calls one of the functions on this
defined interface. It’s within this function that the add-in uses the Inventor API to create its
command and positions it within the user interface.

The code for StandardAddInServer.vb is shown below with three lines highlighted. The
Implements statement indicates that this class is implementing the Inventor add-in interface.

The next line declares a variable for the add-in’s command. An add-in can support many
commands. For example, Tube and Pipe has many commands, all defined within the single
add-in. The Nifty Add-In template creates an add-in with a single command. You can edit that
command to be yours and use it as an example as you add additional commands. The second
highlighted line below is the declaration of a variable that is type ButtonDefinition. A
ButtonDefinition object defines how a button will be displayed in the user interface and it reacts
when the button is clicked. You’ll need a line like the one below for each button defined by your
add-in. The “WithEvents” keyword specifies that the object can support events, which we need
in this case to get an event notification when the button is clicked. The name of this variable can
be any valid Visual Basic variable name. The template uses the notation of appending an “m_”
to the name to indicate it is a “member variable” in the class. This means that it’s available
globally within the class. You can also change the name of “m_sampleButton” to a name that
better matches what your command does.

The last highlighted line in the code above is the “ApplicationAddInServer Members” region.
This is a block of code that’s currently collapsed. Visual Studio supports creating user-defined
regions to let you organize your code by collapsing and expanding it to keep your current view
uncluttered. Click on the “+” sign to the left of the name to expand the region.

Creating Add-Ins for Inventor Page 16

Inside this region is the definition of the Activate, Deactivate, Automation, and
ExecuteCommand methods. These are the functions that must be implemented as part of
implementing the ApplicationAddInServer interface. The Activate and Deactivate are the most
important. The Activate Sub is called by Inventor when the add-in is loaded and the Deactivate
is called when the add-in is unloaded.

 1 Public Sub Activate(ByVal addInSiteObject As Inventor.ApplicationAddInSite,
 2 ByVal firstTime As Boolean) Implements Inventor.ApplicationAddInServer.Activate
 3 Try
 4 ' Initialize AddIn members.
 5 g_inventorApplication = addInSiteObject.Application
 6
 7 ' Connect to the user-interface events to handle a ribbon reset.
 8 m_uiEvents = g_inventorApplication.UserInterfaceManager.UserInterfaceEvents
 9
10 '***
11 '* The remaining code in this Sub is all for adding the add-in into Inventor's UI.
12 '* It can be deleted if this add-in doesn't have a UI and only runs in the
13 '* background handling events.
14 '***
15
16 ' Create the button definition using the CreateButtonDefinition function to simplify
17 ' this step.
18 m_sampleButton = Utilities.CreateButtonDefinition("Command" & vbCr & "Name", _
19 "niftyCommandID", _
20 "", _
21 "ButtonResources\SampleButton")
22
23 ' Add to the user interface, if it's the first time.
24 If firstTime Then
25 AddToUserInterface()
26 End If
27 Catch ex As Exception
28 MsgBox("Unexpected failure in the activation of the add-in ""AU_Example""" & _
29 vbCrLf & vbCrLf & ex.Message)
30 End Try
31 End Sub

On line 1 you can see that one of the arguments being passed into the add-in is called
addInSiteObject and is of type ApplicationAddInSite object. This object doesn’t do much, but it is
used on line 5 to get the Inventor Application object and assign it to a variable. Because of this,
the add-in now has access to the entire Inventor API.

Line 18 calls the function that creates the ButtonDefinition object. The CreateButtonDefinition
function isn’t part of the Inventor API but is a new function I wrote that’s defined within the add-
in template. It makes it easier to create a ButtonDefinition and has the four arguments as listed
below.

DisplayName – The first argument is the display name. This is the name of
the command that is displayed on the button. In the example above, it is
defined as “Command Name” with a carriage return between them to force it
to break into two lines, as shown to the right.

Creating Add-Ins for Inventor Page 17

InternalName – The second argument is the internal name. This is a name that must be unique
with respect to all other commands. The user never sees this but it serves as the unique ID for
this command. There aren’t any rules for this name other than it has to be unique. It’s
recommended to append your name or company name to the name to help guarantee
uniqueness. In the command created by the add-in template, it is “niftyCommandID” but you
should rename it to something else

Tooltip – The third argument is optional and is the tooltip. If you don’t provide this argument or
pass in the default value of an empty string, then the display name is used as the tooltip. The
tooltip is displayed when the user hovers the mouse over the command button.

IconFolder – The fourth argument defines the icon to use for the command. In the past, setting
up the icon has been one of the more difficult parts of creating an add-in but the
CreateButtonDefinition function attempts to simplify this. All you need to define the icon is to
specify a folder for this argument. That folder should contain two files; 16x16.png and
32x32.png. These are the images that will be displayed on the button. Inventor can display large
and small buttons, so it needs two images; 16x16 pixels and 32x32 pixels.

In the example created by the add-in template, the folder is “ButtonResources\SampleButton”.
This is a path that is relative to the add-in DLL. For each new command you add, you should
create a new folder within the ButtonResources folder. That new folder will contain the
16x16.png and 32x32.png file for that command. If you use Windows Explorer to browse the
contents of your add-in project, you’ll see that there is already a ButtonResources folder and in
that folder is the SampleButton folder that contains the two png files.

Positioning Your Button
The code above creates a ButtonDefinition, which defines what the button will look like but it
doesn’t define where the button will exist in the user interface. You do this by creating a new
command control. A command control defines the location in the user interface and is what the
user sees and clicks. The command control references the button definition to get the
information it needs to display itself. Because of this, you can create a single ButtonDefinition
and then create multiple controls that reference it. For example, if I have a generic command,
like a calculator, I might want to add it to all of the ribbons. Even though there are multiple
buttons, they all end up triggering the same event when any of them are clicked because it’s the
single button definition that handles the event. Also, if I edit the button definition, for example,
make it disabled, all of the controls referencing that button definition will become disabled.

You have complete control over where to position your button, but because of that flexibility, it’s
not particularly simple to do. To position a button you need to have an understanding of the
ribbon and the associated API.

The ribbon provides a hierarchical structure to access Inventor’s commands. At the top of the
hierarchy is the ribbon. The part ribbon is shown below as an example. In Inventor there are 7
ribbons. The most commonly used ribbons are ZeroDoc (when no documents are open), Part,
Assembly, Drawing, and Presentation. Within each ribbon are a series of tabs. In the Part
ribbon, as shown below, there are the tabs “3D Model”, “Inspect”, “Tools”, “Manage”, “View”,
etc. Each tab contains panels. The “3D Model” tab contains the panels “Sketch”, “Primitives”,
“Create”, “Modify”, etc. And finally, each tab contains controls, which are the individual buttons.

Creating Add-Ins for Inventor Page 18

Below is the API object model for the ribbon related objects that you use to create a button and
add it to the ribbon.

ButtonDefinition (b)

ControlDefinition [b]

ControlDefinitions

ComboBoxDefinition (b)

CommandManager UserInterfaceManager

MacroControlDefinition (b)

Ribbons

RibbonTab

RibbonTabs

CommandControl

CommandControls

Ribbon

RibbonPanel

RibbonPanels

ProgressiveToolTip

Application

Below is the code created by the add-in template that adds the control for the sample command.
It traverses the Ribbon hierarchy to get a specific ribbon, tab, and panel and then creates a new
CommandControl. On line 8 it gets the ribbon named “Part”. On line 11 it gets the tab in the part
ribbon named “id_TabTools” which is the “Tools” tab. On lines 13-18 it attempts to get a panel
named “MySample” from the tool tab. On line 20 it checks to see if it was able to successfully
get the “MySample” panel and if it didn’t it creates it on line 22. The variable g_addInClientID on
line 22 is a global variable the template created that contains the unique ID for the add-in. And
finally, on line 26 it uses the AddButton method to create a new CommandControl in the panel,
passing in the ButtonDefinition that was previously created.

 1 ' Adds whatever is needed by this add-in to the user-interface. This is
 2 ' called when the add-in loaded and also if the user interface is reset.
 3 Private Sub AddToUserInterface()
 4 ' This sample code illustrates creating a button on a new panel of the Tools tab of
 5 ' the Part ribbon. You'll need to change this to create the UI that your add-in needs.
 6
 7 ' Get the part ribbon.
 8 Dim partRibbon As Ribbon = g_inventorApplication.UserInterfaceManager.Ribbons.Item("Part")
 9
10 ' Get the "Tools" tab.
11 Dim toolsTab As RibbonTab = partRibbon.RibbonTabs.Item("id_TabTools")
12
13 ' Check to see if the "MySample" panel already exists and create it if it doesn't.
14 Dim customPanel As RibbonPanel = Nothing
15 Try
16 customPanel = toolsTab.RibbonPanels.Item("MySample")
17 Catch ex As Exception
18 End Try
19
20 If customPanel Is Nothing Then
21 ' Create a new panel.
22 customPanel = toolsTab.RibbonPanels.Add("Sample", "MySample", g_addInClientID)
23 End If
24
25 ' Add a button.
26 customPanel.CommandControls.AddButton(m_sampleButton, True)
27 End Sub

Creating Add-Ins for Inventor Page 19

Here’s another example to illustrate the concepts. Through the API you can add buttons to
existing panels and you can create your own tabs and panels. The example below shows a
“Bulge” custom command added to the “Modify” panel and a custom panel called “Zip” where
the custom command “Create Zip Shapes” has been added.

The first step in adding a new command is to decide where your button needs to go. Does it
have similar functionality to an existing Inventor command so you might want to position it close
to that command? Or does it do something entirely different than anything else and it should go
on its own panel or even its own tab combined with more of your custom commands? Once you
know where you want it to go you need to get the names of the associated ribbon elements. For
example, for the “Bulge” command shown above, I needed to get the “Part” ribbon, the “3D
Model” tab, and the “Modify” panel. You can even go further and get a specific control within the
panel if you want to position your button next to it. By default, it will go to the end of the
commands in the panel.

To get each of these ribbon elements you need to know their names. To find out their names
you’ll want to copy and paste the sample macro from the API help called “Print information
about all available ribbons”, as shown below. Running the macro will result in the creation of
C:\temp\RibbonNames.txt which contains the names of all the ribbon elements.

http://help.autodesk.com/view/INVNTOR/2018/ENU/?guid=GUID-1C3EE90E-7B76-4E03-A9E6-B03036A7DBA7
http://help.autodesk.com/view/INVNTOR/2018/ENU/?guid=GUID-1C3EE90E-7B76-4E03-A9E6-B03036A7DBA7

Creating Add-Ins for Inventor Page 20

Using the information in the RibbonNames.txt file I can see that the part ribbon is named “Part”,
the “3D Model” tab is named “id_TabModel”, and the “Modify” panel is
“id_PanelP_ModelModify”. Using that information, the code below adds a new button to that
panel.

' Get the part ribbon.
Dim partRibbon As Inventor.Ribbon =
g_inventorApplication.UserInterfaceManager.Ribbons.Item("Part")

' Get the "Model" tab from the part ribbon.
Dim modelTab As Inventor.RibbonTab = partRibbon.RibbonTabs.Item("id_TabModel")

' Get the "Modify" panel from the model tab.
Dim modifyPanel As Inventor.RibbonPanel = modelTab.RibbonPanels.Item("id_PanelP_ModelModify")

' Add the button to the modify panel.
modifyPanel.CommandControls.AddButton(m_bulgeButton, True)

Reacting to a Button Click
As described above, the creation of a button involves creating a ButtonDefinition object to define
what a button looks like and then the creation of a control to define the button’s location in the
ribbon. When the variable for the ButtonDefinition was defined, the “WithEvents” keyword was
used to indicate to Visual Basic that you want to handle events that are associated with that
object. A ButtonDefinition object supports the OnExecute event. The OnExecute event is fired
whenever any of the buttons that reference the ButtonDefinition are clicked. It’s up to you to
handle that event and then do whatever the command is supposed to do.

Here’s a brief primer on setting up a ButtonDefinition and handling the OnExecute event. This
same process is used when handling any other event in Inventor.

Define the Variable for the Object that Supports Events

This is done by declaring the variable at a place where it will remain in scope for the desired
time. For example, the variable for the ButtonDefinition is declared as a member variable of the
add-in class so it will remain available for the lifetime of the add-in. Events associated with
forms are typically declared within the Form class so they remain available for the lifetime of the
form. You declare a variable that will support events by using the “WithEvents” keyword, as
shown below.

Private WithEvents m_sampleButton As ButtonDefinition

The line above is declaring the variable but it’s not assigning anything to it. That’s done later in
the program within the Activate method when the add-in is loaded. In the Nifty Add-In template,
you’ll see that it’s declaring another variable using WithEvents that is of type
UserInterfaceEvents to be able to listen for a user interface related event. You use this same
approach to listen to any of Inventor’s events.

Assigning the Event Variable
Once you declared the variable you need to assign something to it. In the Nifty Add-In template,
it calls the Utilities.CreateButtonDefinition method which creates and returns a ButtonDefition
object and this is assigned to the m_sampleButton variable.

Creating Add-Ins for Inventor Page 21

Creating an Event Handler
You declare the variable, assign it, then you need a Sub that acts as the event handler. This is a
sub that Inventor calls when that event occurs. Visual Studio makes it easy to create this sub. At
the top of the code window are three drop-downs. If I expand the middle one, I see a list of the
variables I’ve declared that support events. In the example below, I’ve selected
“m_sampleButton”. Once a variable has been selected from the list, the drop-down on the right
will display a list of the events that object supports. In this case, I’ve selected the OnExecute
event and Visual Studio automatically created a new Sub called m_sampleButton_OnExecute
that handles the OnExecute event. Now, when the button is clicked this Sub will be called by
Inventor. You can do anything you want inside this sub. In this example, it calls another function
that does the work of the command.

Writing the Command Code
Everything I’ve talked about so far is about the available programming tools and the creation of
the basic structure of the add-in. Once the user clicks the button, then it’s all about what you do
in response to that click. The code that you write to respond to the click is add-in independent
and could have been written as an iLogic rule that only uses the Inventor API or an EXE Macro
so talking about the code is a somewhat generic topic since it doesn’t have anything to do with
the specifics of an add-in. However, because I believe Visual Studio is a much better
environment for writing code I think for your programs that don’t need any iLogic specific
functionality it’s best to write either EXE’s or add-ins.

It’s likely that you already have some code that could be used in an add-in or EXE Macro. Your
existing code might have been written in VBA or iLogic. Most of the sample code in the Inventor
API help is VBA code and variations of the samples might be useful in your programs. Here’s
some information to help you in converting existing code.

Converting iLogic Programs

First, what is iLogic? It’s essentially another IDE (Integrated Development Environment) for
Inventor. It supports the Visual Basic .NET language and provides access to the Inventor API. It
also provides its own library with some additional functions you can use in your programs that
attempt to simplify some operations that the iLogic designers thought would be common when
configuring parts. For part configuration, iLogic is a great tool but as a general programming
environment, it leaves a lot to be desired. On the Inventor Customization forum, most of the
questions that I see regarding iLogic aren’t iLogic questions at all but are general Inventor API
questions and the developer is using the iLogic interface to write their program. In many cases,

Creating Add-Ins for Inventor Page 22

their problems are easily solved just by copying the code over into a Visual Studio project and
letting it automatically find the problems.

Converting an iLogic program to an add-in command or an EXE macro can be as easy as copy
and paste. This is true in the case where the program is making Inventor API calls and not
calling any of the iLogic specific functions. If it is calling iLogic specific functionality then you’ll
need to determine the extent of their use and find alternatives using standard Inventor API calls
or other API’s. However, because iLogic is using VB.NET, just the same as Visual Studio, the
general code is the same and calls to the Inventor API will be the same.

Converting VBA Programs

Even though VBA and Visual Studio both use the Visual Basic language it’s best to think of
them as using two different languages. VBA is based on Microsoft’s original Visual Basic which
the latest version is Visual Basic 6, and was released in 1998. Visual Studio uses Visual Basic
.NET which is based on .NET technology launched in 2002 and it continues to be updated. In
2005, the “.NET” portion of the name was dropped so it’s now called “Visual Basic”.

If you want to use an existing VBA program in an add-in or EXE Macro, it means converting the
code from the old Visual Basic 6 language into the new Visual Basic .NET language. Even
though there are differences in the languages they are more similar than they are different so
it’s usually quite easy to copy and paste VBA code and then make a few changes to update it to
Visual Basic .NET. Some of these differences are easy to see and are pointed out as errors by
VB.NET; others are not so easily found and show up either as run-time errors or incorrect
results. It’s best to copy and paste one function at a time so you can check the code and try and
catch any of these potential problems. The issues I think you’re most likely to encounter are
listed below.

1. The Set statement is no longer needed. In VBA when you assign an object to a variable

you must use the Set statement. This is no longer required in Visual Basic and in fact, is not

allowed. You’ll get an error for any Set statement, but to fix it all you need to do is delete

Set from the line.

2. Forms. Although VBA supports the creation of forms, they’re quite primitive. There isn’t a

way to convert VBA forms to Visual Basic .NET forms, but you’ll likely want to redesign them

anyway using the expanded capabilities of Visual Basic .NET and you can still re-use the

code behind the form by copying and pasting it into the Visual Basic .NET program. For

example, the code you wrote to react to a button click can be reused, but the dialog and the

button on the dialog will have to be recreated.

3. The global variable ThisApplication isn’t available in Visual Basic .NET. It was shown

earlier how an add-in gets the Application object through the Activate method. You’ll need to

somehow make this available to the code you copied from VBA. The Nifty Add-In template

gets the Application object and assigns it to a global variable that can be used anywhere

else in the program. This just means replacing anywhere “ThisApplication” appears with the

global variable “g_inventorApplication”.

Creating Add-Ins for Inventor Page 23

' Before
Public Sub Sample()
 MsgBox "There are " & ThisApplication.Documents.Count & " open."
End Sub

' After
Public Sub Sample()
 MsgBox("There are " & g_inventorApplication.Documents.Count & " open.")
End Sub

4. VB.NET requires fully qualified enumeration constants. This means the statement

below, which is valid in VBA, does not work in VB.NET.

oExtrude.Operation = kJoinOperation

In VB.NET you must fully qualify the use of kJoinOperation by specifying the enumeration
name as shown below.

oExtrude.Operation = PartFeatureOperationEnum.kJoinOperation

These are easy to catch and fix since VB.NET identifies them as errors and IntelliSense
does most of the work for you to create the fully qualified name.

5. Method arguments default to ByVal. In VBA, function arguments default to ByRef which

means the sub or function can change the values and the modified values are passed back

to the caller. With ByVal, the value of the variable is passed in but is local within the sub or

function so even if the value changes it’s not passed back to the caller. Here’s an example

to illustrate what this means. The VBA Sub below takes a feature as input and returns

suppression and dimension information about the feature.

Sub GetFeatureInfo(Feature As PartFeature, Suppressed As Boolean, DimensionCount As Long)

In VBA this code works fine since it’s optional to specify whether an argument is ByRef or

ByVal and if you don’t specify one it defaults to ByRef. In this example, the Suppressed

and DimensionCount arguments need to be ByRef since they’re used to return information

to the caller. The Feature argument can be declared as ByVal since it’s not expected to

change. In Visual Basic .NET, if you don’t specify ByRef or ByVal, it defaults to ByVal.

Because of that, this example won’t run correctly because the Suppressed and

DimensionCount arguments won’t return the correct values. They need to have the ByRef

keyword added to the arguments for the sub to work as expected.

Sub GetFeatureInfo(ByVal Feature As PartFeature, ByRef Suppressed As Boolean,
 ByRef DimensionCount As Long)

6. Arrays have a lower bound of 0 (zero). In VBA the default lower bound of an array is 0 but

it’s common to use the Option Base statement to change this to 1. It’s also common in

VBA to specify the lower and upper bounds in the array declaration as shown below.

Creating Add-Ins for Inventor Page 24

Dim adCoords(1 To 9) As Double

In VB.NET the above statement is not valid. The lower bound of an array is always 0. The
Visual Basic .NET statement below creates an array that contains 9 doubles.

Dim adCoords(8) As Double

This creates an array that has an upper bound of 8. Since the lower bound is zero the array
can contain 9 values. This can be confusing for anyone familiar with other languages where
the declaration of an array is the size of the array rather than the upper bound. If your VBA
program was written assuming a lower bound of 1, adjusting the lower bound to 0 shifts all
the values in the array down by one index. You’ll need to change the index values
everywhere the array is used.

7. Arrays of changing size are handled differently in VB.NET. This, and the next item are a

couple of array related issues that you might run into. You can’t specify the type when you

use the ReDim statement to re-dimension an array. Specifying a type will result in an error in

VB.NET

' VBA
ReDim adCoords(18) As Double

' VB.NET
Redim adCoords(18)

8. Declaring an array in VB.NET does not initialize it. This will likely be another common

problem encountered that’s not obvious what the problem is from the error. The VBA code

below will fail in .NET resulting in a type mismatch error. This is easily fixed by initializing the

value to an empty array in the declaration, as shown (open and closed braces).

' VBA
Dim adStartPoint() As Double
Dim adEndPoint() As Double
Call oEdge.Evaluator.GetEndPoints(adStartPoint, adEndPoint)

' VB.NET
Dim adStartPoint() As Double = {}
Dim adEndPoint() As Double = {}
oEdge.Evaluator.GetEndPoints(adStartPoint, adEndPoint)

9. Some data types are different. There are two changes here that can cause problems.

First, the VBA Long type is equivalent to the VB.NET Integer type. If you’re calling an

Inventor API method that was expecting a Long or an array of Longs in VBA, that same

code will give you a type mismatch error in VB.NET. Changing the declaration from Long to

Integer will fix it.

Second, the Variant data type isn’t supported in VB.NET. If you have programs that use

the Variant type, just change those declarations to the new equivalent Object type

instead.

Creating Add-Ins for Inventor Page 25

10. Variable scope. The scope of variables within functions is different with VB.NET. Variable

scope is now limited to be within code blocks where-as VBA was only limited to within a

function. If you copy the VBA function below, (which works fine in VBA), into a VB.NET

program it will fail to compile. The last two uses of the variable strSuppressed, (highlighted

in the sample below), report that the variable is not declared. In this example, strSuppressed

is declared within the If Else block and is only available within that block.

' VBA
Public Sub ShowState(ByVal Feature As PartFeature)
 If Feature.Suppressed Then
 Dim strSuppressed As String
 strSuppressed = "Suppressed"
 Else
 strSuppressed = "Not Suppressed"
 End If

 MsgBox "The feature is " & strSuppressed
End Sub

Here’s a version of the same function modified to work correctly in VB.NET. The declaration
of the strSuppressed variable has been moved outside the If Else block, and now has scope
within the entire sub.

' VB.NET
Public Sub ShowState(ByVal Feature As PartFeature)
 Dim strSuppressed As String
 If Feature.Suppressed Then
 strSuppressed = "Suppressed"
 Else
 strSuppressed = "Not Suppressed"
 End If

 MsgBox "The feature is " & strSuppressed
End Sub

11. Events. The concepts and basic mechanics of how to use events are the same in VB.NET

but there are some enhancements to events in VB.NET. The change that will impact the

conversion of your VBA code to VB.NET is a change in the signature of the event handler

Sub. An example of a VBA event handler is shown below.

' VBA
Private Sub oBrowser_OnActivate()
 ' Handling Code
End Sub

The handler for the same event in VB.NET is shown below. Notice the “Handles” keyword
which is now used to specify that the Sub handles a specific event. In VBA the name of the
Sub defined it as an event handler. In VB.NET the name of the sub isn’t important.

' VB.NET
Private Sub oBrowserPane_OnActivate() Handles oBrowserPane.OnActivate
 ' Handling Code
End Sub

Creating Add-Ins for Inventor Page 26

Because of this change, rather than copying and pasting the entire event handler sub from
VBA it’s best to create a new event handler in VB.NET letting Visual Studio create the code
for you and then copy and paste the contents of the sub from VBA.

12. Parentheses are now required around property and method arguments. The use of

parentheses is a bit confusing in VBA because of its inconsistent requirements. When you

copy and paste the code into VB.NET it will point out missing parentheses as an error that

you ca easily fix. The Call statement is still supported but is no longer needed.

Cool stuff in Visual Basic .NET
As we see from the above discussion, there are some differences between VBA and Visual
Basic.NET which cause some issues when porting code between them, however, there are a lot
of new capabilities in Visual Basic .NET that you’ll certainly miss when you try writing VBA code
again. Here’s a short list of some of my favorites.

1. You can set the value of a variable when you declare it.

Dim partDoc As PartDocument = invApp.ActiveDocument

 You can even do this in a For statement:

For i As Integer = 1 To 20

2. Error handling is much better in VB.NET. The old On Error type of error handling is still

supported but you can now use the much more powerful Try Catch style of error handling.

3. The .NET libraries provide a much richer set of functionalities for math functions, string

handling, file handling, working with XML files, the registry, and most everything else.

4. Incrementing a variable. There’s now some simpler syntax for incrementing a variable.

' VB 6
i = i + 1

' VB.NET
i += 1

Creating Forms
You create a dialog as a Visual Basic form and typically display it in response to the user
clicking a button. The code below illustrates responding to a button’s OnExecute event by
displaying a dialog. This example uses the Show method to display the form in a modeless
state. You can also use the ShowDialog method to display it as a modal dialog. Modal means
that the user can’t do anything else while the dialog is displayed but they must interact and
dismiss it before moving on.

Private Sub m_featureCountButtonDef_OnExecute(...)
 ' Display the dialog.
 Dim myForm As New InsertBoltForm
 myForm.Show(New WindowWrapper(m_inventorApplication.MainFrameHWND))
End Sub

Creating Add-Ins for Inventor Page 27

One issue with displaying a dialog is that by default it is independent of the Inventor main
window. This can cause a few problems; the Inventor window can cover the dialog, the dialog is
still displayed if the Inventor window is minimized, and key presses that represent keyboard
shortcuts are stolen by Inventor. To get around these problems you can make the dialog a child
of the Inventor window. The sample code above does this by using the WindowWrapper utility
class, which is part of an add-in project created using the Nifty Add-In template.

Debugging Your Add-In
So far everything that’s been discussed applies to all the varieties of Visual Studio. However,
debugging is where there is a big difference. The Express edition of Visual Studio does not
support debugging a class library type of project, which is what an add-in is, as easily as the
other versions of Visual Studio. First, let’s cover debugging using the Professional and
Community versions of Visual Studio.

Debugging With Visual Studio Community and Professional
Debugging an add-in is an interesting problem because an add-in doesn’t run on its own but is
loaded and called by another program. The program loading and calling an add-in is Inventor.
To debug an add-in, you need Inventor to load it and make the necessary calls while you’re
monitoring everything in the debugging environment. To set up debugging, Run the
“Properties…” command, which is the last command in the Project menu. This will display the
dialog shown below. Select the Debug tab and then select the Start external program option
and browse to locate Inventor.exe as shown below.

To start debugging, run the Start Debugging command in the Debug menu or press F5. Visual
Studio will start Inventor and be in a state that you can debug the add-in. Any breakpoints
you’ve inserted into your program will stop execution and allow you to step through your
program. When a breakpoint is hit you can examine values, step through code, and continue
running.

Creating Add-Ins for Inventor Page 28

Debugging with Visual Studio Express
As I said earlier, debugging an add-in isn’t as easy using Visual Studio Express. It doesn’t
support automatically starting and connecting to an external program. However, you can still
debug with the Express version by performing these steps manually.

1. Compile your project.

2. Start Inventor. Make sure that the “Load Automatically” option in the Add-In Manager for

your add-in is NOT checked. You don’t want it to load automatically because you need

to be able to control the timing of when it loads.

3. In Visual Studio, run the Attach to Process… command in the Debug menu, as shown

below.

In the “Attach to Process” dialog, choose “Inventor.exe” from the list and click “Attach”.

You might notice some small changes in Visual Studio because it’s now in a debug

mode, but there’s not a big change at this point. What’s happened is that Visual Studio is

running your add-in and has attached itself to Inventor so when Inventor loads the add-in

it will load the version of your add-in that is running in Visual Studio.

4. In Visual Studio, add any desired breakpoints to your code.

5. In Inventor, run the Add-Ins command to open the Add-In Manager, select your add-in,

check the “Loaded/Unloaded” checkbox and click OK. Inventor will now load your add-in

and execution will be paused when any breakpoints are hit.

What Happens When You Compile Your Add-In?
There’s something that is happening behind the scenes when you compile your add-in that you
should be aware of to better understand what’s going on in case you need to make changes, or
something isn’t working as expected.

When you start Inventor, it looks in a series of folders on your computer for .addin files. It reads
the contents of the .addin files it finds and if the add-in meets the criteria to be loaded (for
example, it’s the correct version), Inventor loads the add-in DLL. Inventor isn’t looking in your
Visual Studio project folder for .addin files so it won’t find your add-in. To make debugging
easier, the Nifty Add-In Template has set up the Visual Studio project so your add-in files are
being copied to one of the folders where Inventor looks for .addin files. This happens
automatically every time you compile your add-in so the files where Inventor is looking are
always up to date.

Creating Add-Ins for Inventor Page 29

This is accomplished by using a “Build Event” in Visual Studio. In the properties dialog for the
project in the “Compile” tab you’ll see a “Build Events…” button, as shown below.

Clicking this brings up the “Build Events” dialog where you can enter DOS commands that will
be executed before and after your build. The add-in template sets up some post-build steps, as
shown below. These are run after a successful compile.

Creating Add-Ins for Inventor Page 30

The ability to define build events is supported by Visual Studio Professional and Community but
not Express. Actually, Express doesn’t officially support build events because it doesn’t provide
the user interface to let you define them, but if they’re there they do work. So, the build events
that were defined by the project template are there and are executed when you build with
Express but you don’t have the form shown above to make changes to them. These settings are
stored in the project’s .vbproj file and it’s possible to edit them directly using any text editor.

Deploying Your Add-In
Now that you’ve got a working add-in, how do you deploy it for others to use? There are two
approaches to deploying your add-in. The first is the simplest, which is to copy the add-in folder
onto the target machine. The second is to create an installer. Both are discussed below.

Method 1 – Copy the Folder
The first and easiest way to deliver an add-in is to copy the add-in folder to the target computer.
All you need to do is copy the entire add-in folder to the correct location and it will work. The
simple add-in template creates a directory on your machine that contains all the files associated
with the add-in (.addin, .DLL, icon files, etc.). You can copy this directory to any other machine
and the add-in will be available there. There are several directories where Inventor looks for
add-ins, however, I recommend either of the following two:

%appdata%\Autodesk\ApplicationPlugins

%programdata%\Autodesk\Inventor Addins

The appdata directory is user specific so if the computer is used by multiple users it will only

be available to the single user where this is copied. Because it is user specific you don’t need
administrative privileges to copy files it there. This is the folder where a project created using the
add-in template is copied by the post-build step.

The programdata directory is for all users and you will need administrative privileges.

To remove the add-in from the machine you delete the folder.

Method 2 – Create an Installer
The second method takes more work on your side but is simpler for the person installing it
because they just run the installer and it puts everything where it should go. The installer copies
the needed files to the correct location so it’s about as simple as an installer can get. Another
advantage with using an installer is that it will show up in the installed programs list and the user
can easily uninstall it from there.

There are many tools to create an installer, some are free and some cost 100’s of dollars. For
example, Visual Studio Professional and Community can be used to create installers. However,
I’ve found a free tool that I’ve been happy with and is what I use to create all my Windows
installers. It also allows those of you using Visual Studio Express to create an installer. It’s
called Inno Setup and is freely available on the web at http://www.jrsoftware.org/isinfo.php.
Below are the step-by-step instructions to create a setup using Inno Setup.

http://www.jrsoftware.org/isinfo.php

Creating Add-Ins for Inventor Page 31

1. Download the Unicode QuickStart pack, as shown below. Install the pack, taking all the

defaults. The QuickStart pack includes Inno Setup and some additional utilities to make

using it easier.

2. When you run Inno Script Studio from the start menu you’ll be presented with the

dialog shown below. Select the “Simple Script” template and make sure the “Use script

wizard to create project” is checked.

Creating Add-Ins for Inventor Page 32

3. On the Welcome screen, make sure “Create a new empty script file” is unchecked and

click “Next”.

4. Enter values for the Application Information page, as shown below. The publisher and

website are optional and can be blank.

Creating Add-Ins for Inventor Page 33

5. Edit the Application Folder page as shown below, I changed the base folder to

“(Custom)” and entered “{userappdata}\Autodesk\ApplicationPlugins” as the destination

path. That’s where the files will be installed. I specified “AU Sample” as the name of the

folder that will be created and the files installed to. This is typically the name of your add-

in. Finally, I unchecked the “Allow user to change the application folder” so the user can’t

change the install location.

6. For the Application Files page, check the box for “The application doesn’t have a main

executable file” and then click the “Add folder...” button, browse to your projects folder

and choose the bin\Debug folder. Answer “Yes” to the question about including

subfolders.

Creating Add-Ins for Inventor Page 34

7. For the Application Icons page, uncheck “Allow user to change the Start Menu folder

name and check “Create an Uninstall icon in the Start Menu folder”.

8. I didn’t change anything on the Application Documentation page, but you can specify

license and information files if you want.

Creating Add-Ins for Inventor Page 35

9. I took the default “English” on the Setup Languages page. This defines the language of

the installer, not your add-in.

10. On the Compiler Settings page, specify the directory where the installer will be created

and the name of the setup file. I created a subdirectory called “Installer” within my Visual

Studio project folder. That way I can keep all the code related to the add-in together.

Creating Add-Ins for Inventor Page 36

11. Take the default for the Inno Setup Preprocessor page.

12. Click Finish which will finish the wizard and take you back to the Inno Script Studio

interface and it will ask if you want to compile the script. Click “Yes” to create your

installer.

This will result in the dialog below. Click “Yes” and choose the same folder that you
specified in step 10. I enter the name of my add-in as the name of the .iss file that will be
saved. The .iss file is the source for your installer project.

Creating Add-Ins for Inventor Page 37

13. Anyone can now install your add-in on their computer by running the installer you just

created. In this example it is AUAddInInstaller.exe. They’ll get the familiar installer

sequence and can uninstall it using the standard Windows uninstall from the Control

Panel.

Creating Add-Ins for Inventor Page 38

Updating Your Add-In to a New Version of Inventor
An EXE or an add-in is loosely coupled to Inventor. The only tie to Inventor is that your project is
referencing a file (.NET Interop) that describes the Inventor API. That’s how Visual Studio can
provide code completion. The Nifty add-in template creates a project that is referencing the
interop for Inventor 2018. You can see this for your project in the Solution Explorer, as shown
below. When I select “Autodesk.Inventor.Interop” from the list of references, information about
the reference is displayed in the Properties window. In the path I can see “Inventor 2018” and
the version is 22.0.0, which also corresponds with Inventor 2018.

What this means is that the add-in knows about the API that is delivered as part of Inventor
2018. If I use the add-in with Inventor 2019 it will still work. The interops for older versions of
Inventor are delivered with Inventor to provide backward compatibility. The limitation will be if
you write a new add-in and want to use new API functionality that’s been added in Inventor
2019. Visual Studio won’t know about the new functionality because the project is referencing
the interop for 2018. To fix this, delete the current reference to Autodesk.Inventor.Interop by
deleting the node in the Solution Explorer and then add a new reference by right-clicking on the
References node and choosing “Add Reference…”. There are different ways to add references

Creating Add-Ins for Inventor Page 39

to different kinds of libraries. For the Inventor interops, choose “Browse” from the panels on the
left and then click the “Browse…” button at the bottom of the dialog. Next, find the
Autodesk.Inventor.Interop.DLL file for the version of Inventor you want to use. For Inventor
2019, it’s in the “C:\Program Files\Autodesk\Inventor 2019\Bin\Public Assemblies” folder. You
can modify the references of any existing project using this process.

Just remember that it isn’t necessary in most cases and is only needed when you need to use
new API functionality. In fact, it’s usually better to use an older interop so your program will be
compatible with more versions of Inventor. For example, if I reference the interop for Inventor
2017 into my add-in, my add-in will work with Inventor 2017 and all later versions. It won’t work
with versions before Inventor 2017. If I write it for Inventor 2019, it won’t work with earlier
versions.

