

Page 1

SD224080

Understanding Geometry and B-Rep in Inventor and
Fusion 360

Brian Ekins
Ekins Solutions, LLC
brian@EkinsSolutions.com

Description

A critical component of any CAD system is the ability to accurately describe a design. For
mechanical CAD systems, the solid and surface geometry that's used to represent part
geometry is extremely important. This class will investigate the internals of how Inventor and
Fusion 360 represent solids and surfaces. We'll look at how solids and surfaces are constructed
and modified, and how you can access this information through the Inventor and Fusion 360
APIs. We'll look at how to use the API to query and evaluate the shape of a model. We'll also
cover some modeling functionality that is only available through the API. Because both Inventor
and Fusion 360 both use Autodesk Shape Manager for the modeling core the APIs for both
products are very similar in this area. Because of that this class can cover both products.

Speaker(s)

CAD has been a passion of mine ever since I saw a demonstration of an Applicon system
during a high school field trip back in 1977. My experience in the industry since then has been
varied. I’ve developed and taught training classes, both on modeling and programming. I’ve
worked as an Application Engineer where I specialized in complex modeling and customization
of the software and I demonstrated the software and performed benchmarks to show customers
that the software could do what they need. When Intergraph began developing Solid Edge I
moved from the role of a modeler and API user to an API designer. I then moved to Autodesk
where I designed the API for Inventor and most recently, I been designed the API for Fusion
360. Now I run my own consulting/contracting business where I help Inventor and Fusion 360
users make Inventor and Fusion 360 into a customized tool specific to their needs. Contact me
if you need help with your use of the software. https://EkinsSolutions.com

Learning Objectives

• Discover how surfaces and solids are represented and what B-Rep is.

• Understand how to use the Inventor and Fusion 360 APIs to query a model.

• Understand what transient or temporary B-Rep is and discover some of its capabilities.

• Understand how to create and display transient and temporary B-Rep bodies.

https://ekinssolutions.com/

Page 2

Introduction
Solid and surface models are at the core of Inventor and Fusion 360. A solid model is a digital
representation that accurately describes a 3D object. The ability to access and fully analyze that
solid model is critical for many applications. When working interactively with Inventor and Fusion
360, it is intuitive to work with a solid model because you can easily see and identify areas you
want to manipulate. For example, if you want to fillet some edges of the part, it’s simple to
specify the edges by interactively selecting them. This paper looks at how Inventor and Fusion
360 create a model, how a model is represented internally within Inventor and Fusion 360, and
how you use the API to work with that model, which is much different than using the user
interface.

Working with models using the API is much more difficult than through the user interface but
can also be more powerful by allowing you to automate routine tasks that are extremely tedious
and error-prone when done manually. I like the analogy of flying an aircraft. When using
Inventor and Fusion 360 interactively, it’s like flying on a nice clear day with full visibility; it’s
easy to see where you’re going and to visually follow your course. Using the API is like covering
the windows of the airplane with black paper and flying entirely by instrument. It’s only by
knowing how to read and interpret the instruments that you’ll be able to follow your course,
avoid collisions, and land successfully. With Inventor and Fusion 360, it’s trivial to interactively
select an edge to fillet, but to specify the same edge using a program, you’ll have to learn how
the API provides access to the model geometry.

Building a Model Interactively
Before we look at how to access a model through the API (fly by
instrument), let’s review the process of creating a model
interactively (fly by sight) and think about the steps you go
through as we look at one way to build this model.

Page 3

1. As with all parts, we begin by creating a sketch. In this case, the base XY construction
plane has been chosen as the sketch plane, a rectangle of the correct size has been
drawn and used to create an extrusion.

2. In the next step, another sketch is created by selecting the back face of the block.
Another simple shape has been drawn and extruded to create the shape on top of the
block.

3. Next, some fillet features are created to round and fillet some of the edges.

Page 4

4. Finally, some hole features are placed to complete the model.

What I’ve just shown is a very simple model and is trivial to model for anyone with a little bit of
experience with Inventor or Fusion 360. However, let’s look at what must be done to create this
model and the things to consider if you are writing a program to create the same design.

After creating the first extrusion, the next step is to create a sketch on the back face of the block
in step 2. When working interactively, you easily select the face. In a program, it’s possible to
interact with the user and have them select things but you don’t want to do that when you’re
trying to automate a process. In this case, we want to somehow find that back face without
involving the user.

In step 3, you need to find the four edges that you want to fillet. And then finally in step 4, you
need to find the faces that the holes will be concentric to.

All these operations involve finding specific pieces of the existing model. This is a common use
of the B-Rep portion of the API. The need to query a model isn’t limited to creating models but is
also used when analyzing an existing model and in assemblies when automatically creating
constraints and joints. It can also be used when creating custom translators to export Inventor
and Fusion 360 models into some other format.

The concepts described in the rest of this paper describe what a model actually is and how you
can interrogate it to find the specific geometry you want.

Page 5

Inventor and Fusion 360 Solid Models
Now we can focus on the solid model that’s been created in Inventor or Fusion 360 or imported
from some other system. Both Inventor and Fusion 360 use the Autodesk Shape Manager
(ASM) modeling kernel to create their solid and surface models. Even though the products
support some different functionality the underlying core is the same and as a result, the
programming interfaces that expose the low-level geometry are very similar. The biggest
difference in this area between the two products are the names of some of the API objects,
which I’ll point out as we go along. In fact, most of the concepts described here also apply to
other non-Autodesk solid modelers.

A solid model isn’t really solid but is a group of surfaces that enclose a volume. This is known as
a Boundary-Representation or B-Rep. A B-Rep provides a complete geometric description of a
solid or surface model. A solid is a special case of B-Rep where the surfaces are tightly
connected along all the edges to form a closed volume. Because of this, the modeling kernel
can compute mass properties and perform other operations as if it was solid. When you create a
new feature, the modeling kernel is creating the surfaces that represent that feature, intersecting
them with the existing model, and trimming everything back to get a closed volume.

There are two concepts you need to understand to be able to work with a B-Rep model;
topology and geometry, which are described in the sections below along with the API
functionality that lets you access this information. An important point to understand is that the
functionality described is providing read-only access to the model. It does not provide any
editing capability. Editing of an Inventor or Fusion 360 model is always done through features.

Page 6

Topology Defined
The topology defines the structure of a B-Rep model. It’s a hierarchical structure of objects. The
full API object hierarchy for the B-Rep topology is shown in the following illustration where
Inventor is on the left and Fusion 360 is on the right. There’s a one-to-one correspondence
between the objects except for the BRepLump objects, which only exist in Fusion 360 and are
discussed in more detail below. The discussion that follows describes each of the objects in the
hierarchy. I refer to the objects using “InventorObject/Fusion360Object” notation. Fusion
appends the name of all these objects with “BRep” to differentiate B-Rep objects from Mesh and
T-Spline objects.

Edge

Edges

EdgeUse

EdgeUses

SurfaceBodies

SurfaceBody

Vertex

Vertices

EdgeLoop

EdgeLoops

Face

Faces

FaceShell

FaceShells

PartComponentDefinition

BRepEdge

BRepEdges

BRepCoEdge

BRepCoEdges

BRepBodies

BRepBody

BRepVertex

BRepVertices

BRepLoop

BRepLoops

BRepFace

BRepFaces

BRepShell

BRepShells

Component

BRepLump

BRepLumps

Page 7

Bodies
You access the B-Rep through the PartComponentDefinition/Component object. These objects
provide access to a collection object that returns all the bodies in the component. As far as the
B-Rep structure, the top-level object is the SurfaceBody/BRepBody object (or commonly
referred to just as “Body”). The Inventor name is a bit confusing, but despite the name, a body in
both systems represents both solid and surface models. From the API hierarchy in the following
illustration, you can see that SurfaceBody/BRepBody objects are accessed using the
SurfaceBodies/BRepBodies collection object obtained from the PartComponentDefinition/
Component object. Most parts in Inventor have a single body, like the simple example shown
below, but they can have 0, (an empty part), or more than one body. In Fusion 360 it’s not
uncommon to have multiple bodies in a component.

SurfaceBodies

SurfaceBody

PartComponentDefinition

BRepBodies

BRepBody

Component

Lumps
The BrepLump object is only supported by Fusion 360. Internally within the modeling core it also
exists in Inventor, but it’s not exposed through the API. It was a design decision at the time to
not expose it since it’s not commonly used. In Fusion 360 it was decided that it would be best to
expose the full set of internal data. The ironic thing is that Fusion 360 doesn’t allow you to
create a model with multiple lumps but automatically breaks them into independent bodies so
there is always one lump per body. In Inventor you can have multiple lumps, but the API doesn’t
reflect that. It’s never been a problem though because even in the rare case where someone
needs lump information, it can be derived using the other objects that are provided.

A lump represents a set of connected faces. In the picture below, the body has been split with a
large hole. In Inventor, this is still a single body, but each of the pieces are represented
internally as a lump. In Fusion 360, when the hole is cut, the result will be two bodies.

BRepBodies

BRepBody

Component

BRepLump

BRepLumps

Page 8

Shells
The FaceShell/BrepShell object represents a single set of connected faces. In most cases, a
shell is equivalent to a lump. The exception is when you have a model that has an internal void.
For example, if you create a ball and hollow it out with another ball, this model is a single body
that contains a single lump and has two shells; one shell defines the outer set of faces, and the
other the inner set of faces. This is extremely rare because you typically try and avoid internal
voids because of manufacturability issues but it is possible to model them.

For most models, a body will have a single shell. In Inventor, the example of the body being split
by a feature illustrates a body that has more than one shell. In Fusion 360, this case won’t exist
because Fusion 360 will automatically create a new body instead of a new shell. The only time
you can have multiple shells in Fusion 360 is the case where there are internal voids.

SurfaceBody

FaceShell

FaceShells

BRepBody

BRepShell

BRepShells

Faces
The Face/BRepFace object represents a single surface within a body. The following illustration
shows an exploded view of a body, where you can clearly see each face that makes up the
model. Using the B-Rep portion of the object model, you can access faces using a
Faces/BRepFaces collection you obtain from either the parent body or a shell object. The
Faces/BRepFaces collection of the body object returns all the faces, regardless of which shell
they are part of.

SurfaceBody

Face

Faces

FaceShell

FaceShells

BRepBody

BRepFace

BRepFaces

BRepShell

BRepShells

Page 9

Loops
The EdgeLoop/BrepLoop object defines the boundaries for a specific face. The illustration below
highlights the two loops that exist for one of the faces in the example model. All faces always
have one, and only one, outer loop and can have zero or more inner loops. This example has
one outer and one inner loop. The outer loop consists of four edges and the inner loop is a
single circular edge.

SurfaceBody

EdgeLoop

EdgeLoops

Face

Faces

FaceShell

FaceShells

BRepBody

BRepLoop

BRepLoops

BRepFace

BRepFaces

BRepShell

BRepShells

Edge
The Edge/BRepEdge object represents each curve in an edge loop. Just as important, an edge
provides important topological information about the body. An edge defines the connection
between two faces. Two faces share the same edge and from an edge, you can get the two
faces it connects. In the picture below, a single edge is highlighted, and that one edge is shared
by the two adjacent faces. For an edge along the open part of a non-solid B-Rep, the edge is
connected only to a single face.

 Edge

Edges

SurfaceBody

EdgeLoop

Face

BRepEdge

BRepEdges

BRepBody

BRepLoop

BRepFace

BRepShellFaceShell

There are several ways to access edges through the API. From a body or shell object, you can
get an Edges/BRepEdges collection that contains all of the edges in the body. From a
Face/BRepFace object you can get the edges associated with the face; either all at once or loop
by loop, using the EdgeLoop/BrepLoop object.

Page 10

Vertex
The Vertex/BRepVertex object represents a point that is at the end of every edge. The picture
below highlights a vertex. In this example, the single vertex is shared by three edges. The API
provides access to all the vertices in a body and face. In Fusion 360 you can also get all the
vertices in a shell. Each edge returns the vertices that define its start and end. From a vertex,
you can get the edges that are connected to it.

Edge

SurfaceBody

Face

BRepEdge

BRepBody

BRepFace

BRepShell

Vertex

Vertices

BRepVertex

BRepVertices

EdgeUse/BRepCoEdge
The EdgeUse/BRepCoEdge object is similar to an edge in that it defines the boundaries of a
face but there are two big differences between an edge and an EdgeUse/BRepCoEdge object.
The first is that EdgeUse/BRepCoEdge objects are unique for each face, whereas edges are
shared between faces. One of the side effects of this difference is that EdgeUse/BRepCoEdge
objects are in an ordered head-to-tail orientation around the face. EdgeUse/BRepCoEdge
objects flow around the outer boundary in a counter-clockwise direction, while inner boundaries
are clockwise (the material is always to the left), as shown in the following illustration. This is not
possible with Edge objects because there are conflicts in direction because the edges are
shared. The direction arrow in red, shown in the picture below, highlights this where the
direction of the EdgeUse/BRepCoEdge for one face is in the opposite direction of the
EdgeUesBRepCoEdge of the adjacent face.

Edge

EdgeUse

EdgeUses

EdgeLoop

BRepEdge

BRepCoEdge

BRepCoEdges

BRepLoop

The other big difference between EdgeUse/BRepCoEdge objects and edges is that the
EdgeUse/BRepCoEdge object is not a 3D object. (All other B-Rep objects are 3D objects.)
EdgeUse/BRepCoEdge objects are defined in the 2D parametric space of a face. The concept

Page 11

of parametric space is discussed in more detail below. And if this seems confusing, don’t worry
about it because the EdgeUse/BRepCoEdge object is rarely used.

Accessing Topology Objects
Besides traversing the object hierarchy as shown above, there are other methods available to
access B-Rep objects that are much more convenient in some cases. These methods are as
follows.

From Features
You can get the faces that were created by a feature using the Faces property of the
PartFeature object in Inventor and the faces property of the Feature object in Fusion 360. You
can get the body(s) the feature impacted by using the SurfaceBodies property of the
PartFeature object in Inventor and the bodies property of the Feature object in Fusion 360.

A few of the features go further and provide categorized access to the faces they created. For
example, in Inventor the ExtrudeFeature object supports the EndFaces, StartFaces, and
SideFaces properties that return the end caps and the sides of an extrusion. In Fusion 360, the
ExtrudeFeature object supports the endFaces, startFaces, and sideFaces properties to get the
same thing. Other features provide similar functionality.

In Inventor, a flat pattern provides direct access to the top and bottom faces of the flat pattern.
The Fusion 360 API doesn’t currently provide any access to the flat pattern.

In Inventor, you can get the feature that caused a face to be created by using the
CreatedByFeature of the Face object. This capability is missing in Fusion 360.

By Location
Another technique for finding B-Rep data is based on its position in space. There are two
techniques to do this; by a point and by a ray. By a point finds the B-Rep entity that is at a
specific point in space. By a ray is where you specify a point and direction in space and then the
B-Rep entities that are intersected by the ray are returned, along with the point where the ray hit
the entity. In Inventor, finding B-Rep data by a point is done using the FindUsingPoint method of
the PartComponentDefinition. In Fusion 360 you use the findBRepUsingPoint method of the
Component object.

To find an object using a ray in Inventor you can use the FindUsingRay or FindUsingVector
methods of the PartComponentDefinition object. FindUsingRay is limited to B-Rep entities and
is more complicated to use than FindUsingVector. FindUsingVector will work for all types of
objects, including B-Rep objects and it easier to use and is faster, so I recommend using it. In
Fusion 360, you can use the findBRepUsingRay method of the Component object. It’s limited to
B-Rep but has a simpler interface like Inventor’s FindUsingVector.

A useful property that a face supports is the PointOnFace property in Inventor and the
pointOnFace property in Fusion 360 that returns a point that is randomly positioned on the face.
It’s difficult to calculate a point that is guaranteed to be on a face. For example, if you have a
tube, the end of the tube is a circular face with a hole in it. The face is very thin and without
knowing the shape of the face it is difficult to determine a point on the face. You’ll see the
PointOnFace property used in some of the samples. It’s particularly useful for determining a
location to calculate a normal but is useful for other things too.

Page 12

By Selection
There are many times when you cannot determine the entities needed automatically. In these
cases, you need to ask the user to select them. When the user selects entities in a solid model,
the objects returned are SurfaceBody/BRepBody, Face/BrepFace, Edge/BRepEdge, or
Vertex/BRepVertex objects.

By Association
Another way to access a specific B-Rep entity is through its association with some other object.
For example, given an assembly joint, you can obtain the two faces that that the joint is
associated with. Attributes are another important tool that you can use for finding a specific
entity at some later time.

Evaluating Topology Objects
Before going on it’s important to understand the difference between topology and geometry. The
topology defines the structure of the model and geometry defines the shape. Here’s an example
that helps to illustrate what topology does not provide. If you were told to describe what a model
with 6 faces and 12 edges looks like, what would you describe? The obvious answer is the
simple block model shown below. You would be correct in that it is a model with 6 faces and 12
edges; however, you would also be incorrect because it’s just one of an infinite number of
models that meet those criteria.

The three models shown below are examples of other models made up of 6 faces and 12
edges. All these models have the same topology but obviously have radically different
geometry.

Page 13

The important thing to understand is that a face represents a surface but does not define
anything about the shape of that surface. The same is true of edges; they represent a curve but
do not define the shape of the curve. The primary purpose of the topology objects is to define
how the various geometries are connected. To fully understand the shape of the model, you
need to look at the geometry associated with the topology object.

Before discussing the geometry, there are some generic queries you can perform on the B-Rep
objects that provide shape related information. These queries are performed using one of the
API evaluator objects, as shown here.

Face

SurfaceEvaluator

Edge

CurveEvaluator

EdgeUse

Curve2dEvaluator

BRepFace

SurfaceEvaluator

BRepEdge

CurveEvaluator3D

BRepCoEdge

CurveEvaluator2D

One of the first things you need to understand before you can use these evaluators is that most
of the evaluations are performed relative to the parametric space of the surface or curve. You
are used to working in model space and dealing with coordinates in its x, y, z 3D space.
Parameter space is similar in that it defines a space, but for surfaces it is a 2D, like a graph
paper and for curves it is a 1D space like a number line. Every surface or curve in a model has
its own unique parameter space.

The picture below shows a planar face with a grid drawn on it to illustrate its parametric space.
Any location on the surface can be precisely specified using two values. For parametric space,
instead of x and y, the letters u and v are used to indicate the coordinates. If the minimum
values are (0, 0) and the maximum are (1, 1) as shown here, then a value of (0.5, 0.5) is at the
parametric center of the face.

(0, 0)

(1, 1)

Page 14

Using the previous picture it’s easy to visualize how it’s possible to specify any position on a
plane using a u and v coordinate. Below are some examples of other surface shapes with their
parameter space grid drawn on them. The surface on the left is somewhat of a variation of the
plane. If you imagine the plane above is made of rubber, you could stretch it into the shape
below. Any point on the surface can still be specified using a u-v coordinate. The surface in the
middle can be formed by rolling up the rubber sheet into a tube. Again, two values can define
any point on the surface. Finally, with the surface on the right, two of the edges of the original
rectangle have been shrunk down to zero length, but still, a u-v value defines any point on the
surface.

Why should you care about the parameter space of a surface? Usually, you don’t; you typically
only need to know about things relative to 3D model space. However, the functions that perform
the surface evaluations work in parametric space, so you’ll need to become familiar with it in
order to use the evaluators effectively.

The parameter space of an Edge is a one-dimensional space. Any point on the edge can be
identified with a single parameter value. The start and end parameter values are the extents of
the curve, and any value in between represents a unique point along the edge, as shown in the
illustration below.

Page 15

To give you an idea what the evaluators support, below is a list of some of the more commonly
used functions, but there are others too.

SurfaceEvaluator
Area – Returns the area in square cm2

GetNormal – Calculates the normal vector of the face at a specified parameter point.
The normal always points out of the solid.

GetParamAtPoint – Given a 3D model point this returns the equivalent 2D parametric
point.

GetPointAtParam – Given a 2D parametric point, this returns the equivalent 3D point.

IsParamOnFace – Given a 2D parametric point, this indicates if the point lies on the face
or not. This is particularly useful to find out if a given point lies within a hole.

ParamRangeRect – Returns the maximum and minimum parameter space coordinates
of the face.

CurveEvaluator
GetEndPoints – Gets the start and end points of the edge.

GetLengthAtParam – Returns the actual length of the edge between two input
parameters.

GetParamAtLength – Returns the parameter value as measured along the curve from a
specified parameter point.

GetParamAtPoint – Given a 3D model point this returns the equivalent parametric value
along the edge.

GetPointAtParam – Given a parametric value, this returns the equivalent 3D point.

GetParamExtents – Returns the minimum and maximum parameter values of the edge.

Two of the most commonly used functions of the SurfaceEvaluator is the ability to calculate the
area and get surface normals. Using the Area property is easy, since it doesn’t require any
arguments, and returns the area of the
face in cm2. A normal is a direction that
is perpendicular to a face at a specific
point. A planar face has the same
normal at any location on the face,
whereas a spherical face has a different
normal for every position on the face.
For a solid, the normal always points out
of the solid. The picture to the right
shows a series of normals displayed on
a spline face. You can see how they are
perpendicular to the face and how they
all point out of the solid. Getting normals
is often used as a way to determine the
orientation of geometry and is one way
to differentiate one face from another.

Page 16

Geometry
We’ve seen from the previous discussion that the topology itself does not fully describe the
shape of the model but defines the structure or how the model is connected. To fully understand
the shape of the model, you use the geometry of each face and edge by using the
Geometry/geometry property of the face, edge, or EdgeUse/BRepCoEdge object. The geometry
property returns one of several objects, depending on what the actual shape of the
Face/BrepFace, Edge/BRepEdge, or EdgeUse/BRepCoEdge object is. The following illustration
show the types of geometry objects that can be returned for each of the B-Rep types.

Inventor

EllipseFull2d

Line2d

LineSegment2d

Arc2d

BSplineCurve2d

Circle2d

EllipticalArc2d

Edge

CurveEvaluator

CurveEvaluator

Cylinder

Plane

Torus

BSplineSurface

Cone

EllipticalCone

EllipticalCylinder

Sphere

SurfaceEvaluator

Face

SurfaceEvaluator

EllipseFull

EllipticalArc

Line

LineSegment

Arc3d

BSplineCurve

Circle

EdgeUse

Curve2dEvaluator

Curve2dEvaluator

Vertex

Point

Fusion 360

Ellipse2D

Line2D

Arc2D

NurbsCurve2D

Circle2D

EllipticalArc2D

BRepEdge

CurveEvaluator3D

CurveEvaluator3D

Cylinder

Plane

Torus

NurbsSurface

Cone

EllipticalCone

EllipticalCylinder

Sphere

SurfaceEvaluator

BRepFace

SurfaceEvaluator

Ellipse3D

EllipticalArc3D

Line3D

Arc3D

NurbsCurve3D

Circle3D

BRepCoEdge

CurveEvaluator2D

CurveEvaluator2D

BrepVertex

Point3D

Page 17

In Inventor, in addition to the Geometry property, the Face object also supports the SurfaceType
property, and the Edge and EdgeUse objects support the GeometryType property. These
properties return an enum value that specifies the type of geometry represented by the B-Rep
entity. It’s an easy way to determine what type of object the geometry property will return. In
Fusion 360 you need to get the geometry and then check the type of object returned.

You might notice in the previous diagram that you can get a SurfaceEvaluator from both a face
and from the various geometry objects. If you have access to a face or edge, it’s better to use its
evaluator because it considers the rest of the body. For example, if you get a normal from a
geometry object, the normal is not guaranteed to point out of the solid, since the geometry
doesn’t know anything about the solid.

Each geometry object provides properties that describe the shape of the geometry. For
example, a Cylinder object supports properties to get its base point, axis vector, and radius,
which fully defines a cylinder. A Plane object supports properties to get its position and normal
vector. One thing you might notice from these properties is that the geometry they are defining
is without bounds. The cylinder has infinite length in both directions, and the plane is infinite in
all directions. It’s the B-Rep, specifically the edge loops, that define the boundaries of the
geometry.

Something else you need to be aware of when working with the various geometry objects is that
they are a “tear off” from the B-Rep entity. This means that once you get the geometry object,
there is no relationship back to the B-Rep entity you got it from. For example, if you get a
Cylinder object from a face, the cylinder accurately describes the shape of the face, but if you
modify the model in a way that causes the face to change, the Cylinder object does not reflect
that change. The cylinder you have is a snapshot of the geometry at the point you got it. The
cylinder and the face are completely independent. To get the updated version of the geometry
you need to get a new Cylinder object from the face. Similarly, if you change the radius of the
cylinder it does not affect the face in any way.

Putting it Into Practice
So far there’s been a lot of theoretical discussion without much practical application. To best
illustrate these concepts, I have some sample programs to demonstrate their use. Here is a
detailed description of some of these programs and how they use the B-Rep and geometry data
to accomplish the desired task.

Model a Part
This program creates a part from scratch and demonstrates a
few of the techniques for finding specific B-Rep entities that
have been discussed. It finds a face based on its position in
model space and some edges based on their position and
orientation. It finds cylinders based on face geometry and finds
edges by looking for common edges between a feature and a
known face. When looking for specific geometry, there isn’t a
right or wrong way to do it, as long as you find something that
is reliable. Some solutions may be more efficient that others
but, in most cases, it probably isn’t going to make much
difference in the overall speed of your program.

Page 18

Corks
This sample takes any selected part and inserts a cork into
every hole. It does this by using much of what has been
discussed. It traverses through all the faces of the part,
looking for planar faces. For each planar face it looks at all
the loops, looking for interior loops that consist of a single
circle. It then finds the connecting face, which will be a
cylinder and uses the normal of that face to determine if it
represents a hole or a boss. It ends up finding all the edges
of holes in the part. It then copies and edits an existing cork
part to make a cork of the correct size and inserts it into the
assembly. Finally, it creates a constraint between each cork
and the edge of the hole it fits in.

Measure Thickness
This is an Inventor only sample that displays the thickness
of the part as measured at the current position of the
mouse. There’s some functionality missing in the Fusion
360 API that makes it difficult to get the current mouse
position on the face.

This sample uses Inventor’s InteractionEvents
functionality to start a command and get the current
position of the mouse as it moves over the faces of the
model. With that coordinate point, it then gets the normal
of the face and fires a ray through the model to find the
next face along the normal and the point on that face. The
distance between the two points is the thickness of the part. It uses interaction graphics, which
is a type of client graphics, to display a line showing how the thickness is measured and
displays the thickness in the status bar.

Show Body Normals
This sample displays a small cone on each face of a selected
body, showing the normal direction of that face. To do this it
traverses over the body to get each face and then uses the
PointOnFace functionality to get a point somewhere on the
face and uses that to calculate the normal. It also uses the
RangeBox property of the body to get the overall size of the
part and uses that to determine the size of the arrows, which is
draws by creating transient/temporary B-Rep cones and
displays them using client/custom graphics.

Page 19

UV Parametric Grid
This sample draws a grid on a selected face to
illustrate the parametris space of the face. This
sample demonstrates using several functions on the
SurfaceEvaluator to get information about the
parametric space of the face and then to convert that
information into model space coordinates. Finally, it
displays the result using Client/Custom graphics.

Alternate Representations
You can get model information in other forms besides the B-Rep model. One option is to get a
body that consists of a modified version of the original body. The most common use of this
method is to get a body that is completely made of NURBS (Non-Uniform Rational B-Spline)
surfaces. Some applications work exclusively with NURBS since almost all geometry can be
precisely represented as a NURBS surface. In Inventor, you can use the AlternateBody property
of the SurfaceBody object. This property returns a modified SurfaceBody that meets the criteria
specified. The following example shows the most common use of this property.

Dim body As SurfaceBody = partDef.surfaceBodies.item(1)

Dim nurbsBody As SurfaceBody

nurbsBody = body.AlternateBody(SurfaceGeometryFormEnum.SurfaceGeometryForm_NURBS Or _

 SurfaceGeometryFormEnum.SurfaceGeometryForm_ProceduralToNURBS)

In Fusion 360, you can use the convert method of the BRepBody object. The following is an
example.

body = rootComp.brepBodies.item(0)

nurbsBody = body.convert(BRepConvertOptions.ProceduralToNURBSConversion)

One important thing to understand in this case is the body returned in both cases is a transient
or temporary body. It’s not created within the Inventor or Fusion 360 document but only exists
as an API object and is gone as soon as the variable referencing it goes out of scope. Both
Inventor and Fusion 360 support some additional capabilities with transient/temporary B-Rep,
which is described below.

Transient/Temporary B-Rep
Both Inventor and Fusion 360 support the ability to create and modify B-Rep data that is
independent of any document. Inventor refers to this as “transient” and Fusion 360 uses the
term “temporary” but they mean the same thing in this case. Being temporary, these objects are
not associated with a document, are not visible, and are not saved. They are B-Rep entities that
you can create and modify “off to the side” without affecting any Inventor data.

In Inventor, this functionality is accessed using the TransientBRep object, which is obtained
using the TransientBRep property of the Application object. The fact that you get the object from
the Application object implies that it’s not associated with any document, which is true.

Page 20

In Fusion 360, this functionality is accessed using the TemporaryBRepManager object which is
a static class that you can get using it’s get property.

There are several ways to create a transient body. In Inventor, you use the Copy method of the
TransientBRep object to create a copy of a parametric body. In Fusion 360 you can use the
copy method of the TemporaryBRepManager. You can use one of several methods on the
TransientBRep or TemporaryBRepManager object to create primitive shapes like blocks, cones,
and spheres. You can import geometry from external sources using the ReadFromFile method
in Inventor and the createFromFile method in Fusion 360. You can modify a transient body by
performing Boolean operations between bodies, deleting faces, and transforming a body.

Using transient/temporary B-Rep can have some big advantages over standard Inventor and
Fusion 360 modeling. Because it is transient, the operations are much faster because you don’t
have any of the overhead that you have when creating a part using features. When building up
the solid body using features, both Inventor and Fusion 360 track everything for associativity,
operations are transacted so they can be undone, and graphics are created so you can see the
result. None of this happens with transient B-Rep objects.

Here are some examples of the uses of transient B-Rep:

• To perform some calculations that require simple modifications of the solid. For example,

you can copy the existing part body to create a transient body and then cut sections of

the solid and get the volume of each section.

• You can create a solid using temporary B-Rep and then import it into Inventor to use for

subsequent processing. Temporary B-Rep bodies can be imported into Inventor as a

NonParameticBaseFeature. This is the same type of feature that’s created when you

import a foreign file like a SAT or STEP file.

• You can display a temporary B-Rep body as client/custom graphics. For commands that

have little 3-D widgets made of client/custom graphics, it’s often easiest to construct the

geometry that will be used for the widget using temporary B-Rep and then use

client/custom graphics to display the body.

Page 21

B-Rep as a Mesh
Another representation of a B-Rep body is a mesh. Inventor and Fusion 360 maintain a
triangular mesh of the body that they use for the graphics display of the model. You can get this
existing mesh or create one of your own at any level of accuracy. Below is a picture of a mesh
approximation of a B-Rep model.

In Inventor, this capability is exposed through the
CalculateFacets and GetExistingFacets methods
of the SurfaceBody and Face objects. In Fusion
360 you use the MeshManager object that you get
from the BRepBody, BRepFace, BRepLump, and
BRepShell objects.

There is also similar functionality for edges, where
you can get an edge as a series of points. In
Inventor this is done using the CalculateStrokes
and GetExistingStrokes methods of the
SurfaceBody, Face, and Edge objects. In Fusion
360 you use the calculateStrokes method of the
CurveEvaluator3D object.

