
 

 

IM319632 

Hidden Secrets of Automating Drawings Using Inventor 
Brian Ekins 
Ekins Solutions LLC 
 
 

 

 

 

Description 

Automating the creation of drawings is a difficult process. This class will look at the internals of 
Inventor software to help you better understand what’s really going on when a drawing is made. 
With this understanding as a foundation, we’ll look at some different approaches to automating 
creating a drawing along with several sample programs using Inventor software’s API (Application 
Programming Interface) that demonstrate the various techniques. 
 

 

Speaker 

My work in the CAD industry has been varied and began in 1977 when I saw my first CAD 
system. Since then I've developed and taught courses, worked as an Application Engineer 
where I supported sales by working with potential customers to model parts, build assemblies, 
create drawings, performed analyses, machined parts, and customized the software. Because 
of my end-user perspective and experience writing customizations, I moved into the role of the 
designer for the Solid Edge API. Later, I moved to Autodesk where I designed the API for 
Inventor and then Fusion 360. As part of the API designer role, I’ve written the documentation, 
many of the sample programs, taught classes and supported those using the API’s. Now I have 
my own business where I help Inventor and Fusion 360 users be more productive by providing 
tools and customizing the software into a tool specific to their needs. 
 
 

 

 

 
Version 2 

Learning Objectives 

• Learn about the internals of Inventor drawings. 

• Learn about different strategies for automating drawings. 

• Learn how to add annotations to a model. 



 
 

 

Page 2 

Introduction 
Automating drawings is not an easy task and over the 
years there have been many presentations at 
Autodesk University discussing different approaches. 
For this presentation, I’m hoping to take a slightly 
different approach and take a “behind the scenes” 
look at how Inventor creates a drawing. I believe 
having this understanding can help you better 
understand how to accomplish the things you need to 
do.  

To get started let’s dissect the pieces of drawing and 
look at each piece in more detail. If we look at the 
drawing to the right, it consists of a sheet of a defined 
size, a border, title block, various views of an 
assembly and some dimensions.  Those are the 
result but what are the underlying objects that allow those to be created? That’s what this next 
section discusses. 

 

Anatomy of an Inventor Drawing 
Let’s dissect the drawing above and look at all the pieces that are 
needed to make it. Some of this may seem like it doesn’t have anything 
to do with drawings, but you’ll see when we get to the example programs 
how having this knowledge allows you to access the information you 
need to automate the drawing process. 

 

Parts 

To a drawing, a part is a Boundary-Representation (B-Rep) of a solid model.  The entire 
discussion about B-Rep data is beyond the scope of this class but there are a couple of things 
that are important to understand. 

People typically think of a part as a collection of features.  It’s true 
that the features define how to construct and recompute a part but  
the result of computing those features is a B-Rep solid model.  
The most important B-Rep concept to understand is that a solid 
model isn’t really solid but is made up of a collection of surfaces 
that tightly connect to create a watertight volume.  In the picture to 
the right, I’ve colored the faces red, yellow, and green.  Even 
though the surfaces have different shapes they’re all represented 
in the B-Rep model as a face. In this example, the red faces have 
planes that define their geometry, the green face has a cylinder, 
and the yellow face has a spline surface. 



 
 

 

Page 3 

In addition to faces, a B-Rep model also has edges.  Edges are the curves in the model.  They 
define the outer shape of each face and are also the intersection of adjacent faces. Faces share 
edges so the edge highlighted in cyan is a single edge and is shared between the red and 
yellow faces it connects. Edges also have geometry associated with them and the cyan edge 
has a line that defines its geometry but other edges in this model use a spline or circle.  

 

Part Space 

Something that’s probably obvious but needs to be clarified is the coordinate system that’s used 
when modeling a part. You can see the coordinate system of the part by looking at the base 
work features of the part.  The origin point is at the (0,0,0) point of part space and the X-Axis 
points in the X direction, the Y-axis in the Y direction, and the Z-axis in the Z direction.  All the 
B-Rep geometry in the part is defined with respect to this coordinate system. 

 

Sketch Space 

Another coordinate system to be aware of within 
a part is the sketch coordinate system. In the 
picture to the right, there is a solid model and 
two sketches.  The dashed blue lines are the X, 
Y, and Z work axes which intersect at the origin 
of part space.  There are sketches drawn on two 
faces of the model.  Sketches are truly 2D, have 
their own coordinate system and all the 
geometry they contain is relative to the sketches 
coordinate system.  The sketch defines how its 
2D coordinate system is positioned in 3D space.  
In the picture to the right, I’ve illustrated the 
coordinate system of each of the sketches. If the 
model should change in shape that will cause 
the sketches to recompute and reorient 
themselves which will change the position and orientation of the sketch coordinate system and 
the geometry in the sketch will move to maintain their same position relative to the sketch 
coordinate system.  

 
Assemblies 

An assembly is a grouping of parts or other assemblies. The assembly environment provides 
tools to add parts and assemblies, position them with respect to each other, and get reports 
about what the assembly contains.  It’s important to remember that the assembly doesn’t 
contain the geometry, but references part documents that contain the geometry. 

When you insert a part or assembly into an assembly, you’re creating an occurrence.  
Conceptually, an occurrence is quite simple in that it is a reference to a part or assembly file and 
a position and orientation of where that part or subassembly exists within the assembly.  

 



 
 

 

Page 4 

Assembly Space 

Placing a part into an assembly doesn’t have any effect on the part. In fact, the part doesn’t 
even know it’s being used in the assembly. The part coordinate system remains unaffected and 
all the geometry in the part remains defined with respect to the part 
coordinate system. However, each assembly has its own 
coordinate system and the occurrences are positioned relative to 
the assembly coordinate system. 

Here’s a simple example where we start with a part and its 
coordinate system. Remember that all the part geometry is relative 
to this coordinate system. 

Now we place two instances of that part into an assembly. The 
assembly has its coordinate system and the occurrences exist in 
the assembly and reference the part. In this case, the occurrences 
are referencing the same part but they define a unique position for each occurrence within the 
assembly coordinate system. 

 

 

  



 
 

 

Page 5 

Proxies 

Proxies are very important, but it is a topic that people struggle with.  Here’s an overview 
description that will hopefully help. Looking at the yellow face shown below, the real face exists 
inside the part. In the assembly, the part has been placed twice. To the end-user, it now 
appears that there are two unique yellow faces in the assembly. I can get coordinates from the 
face and they’re different for each face. I can use the faces to create constraints and they 
behave independently. For all practical purposes, there are two yellow faces in the assembly.   

 

The real face only exists in the part and what you’re seeing, measuring, and selecting in the 
assembly is a face proxy. The proxy represents the face as if it exists in the assembly. If you 
perform a measurement to get the position of one of the corners of the face, Inventor does 
some tricks internally to give you the answer you expect. It gets the position of the real corner in 
the part relative to the part coordinate system and then because the occurrence defines the 
position of the part in the assembly, it uses information in the occurrence to change the 
measurement result so it’s correct for the assembly. Because the occurrence is different for 
each of the instances in the assembly, the results will be different when I get the coordinates 
from one of the faces versus the other. 

The important thing to remember is that if you’re working with geometry in an assembly, you’re 
working with proxy objects that represent the real geometry in the part. In most cases, this is all 
transparent when using the API, but there are some cases where you need to understand this in 
order to get things to work. 

 

Drawings 

Conceptually a drawing is a different type of display of a part or assembly that also supports 
various types of annotations to let you dimension and add other kinds of notes and labels to 
provide an accurate, fully described, documentation of the part or assembly. The interesting 
thing for us is how the internals of Inventor work to go from a 3D model of any size to a sheet of 
paper. 

 



 
 

 

Page 6 

Sheets 

The core of a drawing is a sheet and it owns all the drawing specific data. Like parts and 
assemblies, a sheet also has its own coordinate system where the origin is in the lower-left 
corner of the sheet, and X is to the right and Y is up, as shown below. 

 

All the things that the sheet owns (drawing views, dimensions, notes, etc.) are positioned on the 
sheet relative to this coordinate system.  This coordinate system is fixed and can never change.  

 

Sheet Sketches 

You can also create a sketch on a sheet and draw 2D geometry. When you first create a new 
sketch, it’s coordinate system is the same as the sheet.  However, once it’s created it’s possible 
to drag the sketch around on the sheet so the origin of the sketch coordinate system can be 
different than the sheet coordinate system.  As far as I’m aware, it’s not possible to rotate the 
sketch so it’s X and Y axes are always in the same direction as the sheet. 

It’s easy to know where the origin of the sketch is because when the sketch is active, Inventor 
draws lines along the X and Y axes, as shown below.  The picture on the left shows a sketch in 
the default location and the one on the right shows a sketch that has been moved. 

 

The scale of a sheet sketch is always 1:1. That is if you draw a line that is 5 centimeters long it 
will be 5 centimeters long on the sheet. 



 
 

 

Page 7 

Drawing Views 

Drawing views allow you to reference a part or 
assembly and create a 2D representation suitable 
for a drawing. When you create a drawing view you 
specify the part or assembly file and some other 
options that control how the view is drawn (scale, 
style, which representation to display, the label, 
etc.). The drawing view is then added to the sheet. 
Its position is defined relative to the sheet 
coordinate system. To the right is an example of 
views placed for a very simple part. The graphics 
Inventor creates provide an accurate 2D 
representation just as if you drew it using pencil and 
paper or AutoCAD, however, everything is not as it seems. 

When you’re in a drawing, the view commands only allow 
you to zoom and pan but not rotate the view.  However, 
the API doesn’t have the same limitation.  To the right is 
the same drawing after changing the view to an isometric 
view. 

You can see in the rotated view that it’s not a simple 2D 
drawing but is a modified version of the 3D model.  The 
picture below illustrates better what’s happening. The 
figure on the far left is the solid model with an arrow 
showing the direction of the camera for the desired 
drawing view. Also, the three faces that are visible from 
that direction are highlighted in blue. The second figure 
shows the same solid model but from the orientation of the 
desired view. The third figure shows the view in the 
drawing and is exactly what you would expect.  The 
surprise is the fourth figure which shows the rotated view. 
Compare the first and fourth figures and you can see that 
the curves represent a modified version of the original 
solid. 

 

 



 
 

 

Page 8 

There are three things I want to point out. First, is that the line along the back of the part 
changes between visible and hidden. Second, is the lines in the drawing that represent the 
edges of the cylinder don’t exist in the model. Silhouette edges are created as part of the 
drawing view calculation process. Third, is that there aren’t any overlapping curves. 

Each drawing view also has its own coordinate system. For a drawing view, the origin of the 
coordinate system is in the center of the view. The scale of the drawing view coordinates are the 
same as the drawing view. Where the drawing view scale primarily comes into play is when you 
create a sketch on a drawing view. 

 

Drawing View Sketches 

When you run the Start Sketch command you can click on an 
existing drawing view or the sheet. If you click a drawing view it will 
create a sketch associated with the drawing view. In the picture to 
the right, a drawing view was clicked, and a sketch created. You 
can see by the axis lines that the origin of the sketch is at the center 
of the view. The location of the axes lines is a good visual indicator 
of whether you created a sketch on a drawing view or the sheet. 

The scale of a drawing view sketch is the same as the drawing 
view. For example, if you’ve created a drawing view that is half 
scale and create a sketch on that view and then draw a line that is 5 
inches long, it will display on the sheet as 2 ½ inches. The sketch line is 5 inches long but its 
display is half that. However, if you dimension the line, the dimension will show it being 5 inches 
long. 

Like a sheet sketch, a drawing view sketch can be moved after it’s created so its origin doesn’t 
have to be at the center of the drawing view.  

 

Drawing Curves 

We’ve seen that there is some unexpected geometry in a 
drawing and that the geometry is more like the 3D model it 
came from instead of simple 2D geometry like you would 
expect. Although this geometry is like geometry in the 3D 
model it also has some differences. If we go back to the 
previous model, there are some good examples there. The 
top of the cylinder is a full circle in the model but in the 
drawing, it’s a 180-degree arc because that’s all that can be 
seen in the drawing. The upper horizontal line is covered in 
the center by the cylinder, so the center of the line is shown 
with a dashed line. And finally, the silhouette of the cylinder is 
represented by two lines.  

All the geometry you see in a drawing view is represented by 
DrawingCurve objects. A DrawingCurve object has a 
relationship with the model or sketch geometry that is was 



 
 

 

Page 9 

created from. All the curves in the picture above are associated with an edge that exists in the 
original part model, except for the two silhouette lines which are associated with the cylindrical 
face. Through the API you can get the model entity the drawing curve is associated with. 

It’s these drawing curves that you’ll use when adding any annotations that are attached to 
geometry; dimensions, leaders, balloons, etc.   

 

Drawing Curve Segments 

There’s also an object called DrawingCurveSegment. When the user selects any of the 
geometry in the drawing view, what’s returned is a DrawingCurveSegment object. Typically, 
there is a one-to-one relationship between a DrawingCurveSegment and a DrawingCurve but 
there are cases where there can be multiple DrawingCurveSegments associated with a 
DrawingCurve. In the picture above, the line that is partially hidden is a good example. That 
entire line is one DrawingCurve but is has three DrawingCurveSegment objects.  If you work 
with selections or highlighting you’ll use DrawingCurveSegment objects but when working with 
annotations you’ll use DrawingCurve objects. It’s easy to go from one to the other. The Parent 
property of the DrawingCurveSegment object returns its parent DrawingCurve object and the 
DrawingCurve object has a Segments property that returns a collection of the 
DrawingCurveSegment objects associated with it. 

 

Geometry Intents 

When adding annotations, you specify what the annotation will attach to by passing in 
GeometryIntent objects. The GeometryIntent object is one of the more confusing objects in the 
drawing API. The purpose of the GeometryIntent object is to provide a convenient way to pass 
the information that defines how annotation attaches to geometry. It’s a combination of the 
“Geometry” and the “Intent” of how you want to attach to the geometry. By combining the 
geometry and intent into a single object it makes the API functions that need to use this 
information must simpler. Let’s look at some examples using the annotations below. 

 



 
 

 

Page 10 

In many cases, just the geometry is enough and the intent portion isn’t needed. For example, to 
create the arc dimension in the picture above, the VBA code below can be used. Notice that 
when creating the GeometryIntent object, only the Drawing curve is passed in. Remember that 
selections return a DrawingCurveSegment but annotations require a DrawingCurve. The second 
argument to the CreateGeometryIntent method is for the intent and is optional and in this case, 
isn’t needed.  For an arc and some other dimension types, a combination of the geometry and 
the point specifying the position of the dimension text is enough for Inventor to know how to 
attach the annotation. 

' Have a drawing curve segment selected. 
Dim curveSeg As DrawingCurveSegment 
Set curveSeg = ThisApplication.CommandManager.Pick(kDrawingCurveSegmentFilter, "Arc 1") 
 
' Get the parent drawing curve from the segment. 
Dim curve As DrawingCurve 
Set curve = curveSeg.Parent 
 
' Create a GeometryIntent that only contains the curve. 
Dim intent1 As GeometryIntent 
Set intent1 = sht.CreateGeometryIntent(curve) 
 
' Add the dimension. 
Call sht.DrawingDimensions.GeneralDimensions.AddRadius(tg.CreatePoint2d(15, 10), intent1) 

 

The same is true for most of the annotations in the previous picture.  To create the linear 
dimension, the two lines are enough because they’re parallel and Inventor can figure out what to 
do. For the angle dimension, the two lines are also enough. For the angle between the center 
marks, the three center marks without any intent information are enough. I’ve written a little 
utility that can be useful to understand what geometry intents Inventor is expecting. Look for the 
IntentViewer project in the associated class material. To use it you manually create the 
annotation you want and then run the utility and select the entity. Below is the result when 
querying the radial dimension placed above. In this case, Inventor is returning a GeometryIntent 
that has more information than what was provided when the dimension was created. It’s using a 
parameter value to specify the location of where the dimension attaches to the arc. What a 
parameter value is, is discussed below, but this shows that you don’t always need all the 
information that Inventor is returning for an existing entity. In this case, where the dimension 
attaches to the arc is dependent on the position of the dimension text. When writing code to 
create annotations, you can start with a GeometryIntent that’s just the geometry and then add 
intent information only if it’s required which you can determine with a little bit of trial and error. 

 



 
 

 

Page 11 

One more thing about the Geometry part of a GeometryIntent object is that it’s not limited to 
DrawingCurve objects. You can attach some annotations to other types of objects. For example, 
in the picture above, the angle dimension is referencing the three center marks. It’s also 
possible to attach some annotations to a dimension and leaders to almost anything. In those 
cases, you provide the object you want to attach to as the Geometry argument of the 
CreateGeometryIntent method. 

Now, let’s look in more detail at the “intent” part of a geometry intent. This is where the concept 
of the GeometryIntent gets much more confusing because there are five different ways to 
specify the intent.  The picture below shows the result of using items 2, 3, and 4 from the list 
below. 

 

1. No intent – We already discussed this above, where you don’t provide an intent 
argument when the geometry by itself provides Inventor with enough information to 
place the annotation. 

2. 2D point – In this case you provide a Point2d object as input to specify a coordinate 
location where the annotation should connect. Typically, this is a point on the curve or 
other annotation you’re attaching to but if it’s not directly on the entity the input 
coordinate will be projected onto the entity. The example code below uses this by getting 
the position of the midpoint of the drawing curve and then using that coordinate as input 
to create the leader. 
 

' Get the coordinate of the midpoint from the drawing curve. 
Dim pnt As Point2d 
Set pnt = curve.midPoint 
 
' Create the Geometry Intent using the point. 
Dim geomIntent As GeometryIntent 
Set geomIntent = sht.CreateGeometryIntent(curve, pnt) 
 
' Define the input and create the leader. 
Set leaderPoints = ThisApplication.TransientObjects.CreateObjectCollection 
Call leaderPoints.Add(tg.CreatePoint2d(20, 14)) 
Call leaderPoints.Add(geomIntent) 
Call sht.DrawingNotes.LeaderNotes.Add(leaderPoints, "Leader Text") 

 

3. Parameter – This is different than the parameters you use to control the size of your 
model. All curves have their own 1-Dimensional coordinate system which is referred to 
as “parametric space”. You can think of it as a number line that follows along a curve. 



 
 

 

Page 12 

From a drawing curve, you can get a Curve2dEvaluator object that will give you 
information about the curve in its parametric space. Some useful functionality on the 
Curve2dEvaluator object is the GetParamExtents method which returns the min and 
max param values of the curve. There are also some methods to get the length of the 
curve at a parameter value, the parameter value at a certain length, and convert 
between model and parametric space. The example code below uses this to attach a 
leader at 1/10th of the parametric length of the curve from its start point. 

 
' Get a parameter value that is ten percent along the parameter  
' space of the curve. 
Dim minParam As Double 
Dim maxParam As Double 
Call curve.Evaluator2D.GetParamExtents(minParam, maxParam) 
Dim param As Double 
param = ((maxParam - minParam) * 0.1) + minParam 
 
' Create the Geometry Intent using the parameter value. 
Dim geomIntent As GeometryIntent 
Set geomIntent = sht.CreateGeometryIntent(curve, param) 
 
' Create the leader using the code in the sample above. 

 

4. PointIntentEnum – You can use a value from the PointIntentEnum to specify a specific 
“key point”. This enum is large and what’s a valid value will depend on the geometry type 
and what kind of annotation you’re placing. The most common values used are 
kStartPointIntent, kMidPointIntent, and kEndPointIntent to specify the start, middle, or 
end of the curve but there are others when the geometry is a circle to specify points 
around the circle, and others to specify a location around a dimension or text box. This is 
used in the example below to attach the leader to the start of the curve. 

 
' Create the Geometry Intent using the enum value. 
Dim geomIntent As GeometryIntent 
Set geomIntent = sht.CreateGeometryIntent(curve, PointIntentEnum.kStartPointIntent) 
 

' Create the leader using the code in the sample above. 
 

5. Another Curve – The intent object can be a second DrawingCurve when you want to 
place the annotation at the intersection of two curves, as illustrated below.   

 



 
 

 

Page 13 

Drawing Automation 
There are several approaches to automating the creation of a drawing. Let me begin by saying 
that I don’t believe it’s currently possible to write a program that can take ANY model and will 
create a good, complete drawing. Having said that, there are still things we can do to help with 
the creation of drawings and for a known part or assembly it is possible to fully automate the 
creation of a drawing. 

 

Use Inventor Associativity 

This first approach to drawing automation takes advantage of Inventor associativity and in a lot 
of cases doesn’t require any use of the drawing portion of the Inventor API. With this method, 
you manually create the drawing. Once you have the model and a good drawing you can 
automate creating a copy of both files, editing the model to get the desired size and then 
allowing the drawing to automatically update.  

In the best case, the creation of the “new” drawing is fully automatic and is done just by opening 
the drawing and allowing it to update. In some cases, there might be a little bit of clean-up but 
still much less than if you started from scratch. 

An example of this approach is the 
Configurator sample that’s part of this 
presentation. This is an interesting sample 
because it demonstrates the use of a lot of 
different functionality. The main idea is that it 
starts with a parametric model that will result in 
any of the variations you want by editing 
parameters and possibly suppressing and un-
suppressing features. 

Some tools this sample uses are Apprentice 
and some basic use of the Inventor API. 
Apprentice is a programming tool that provides 
a small subset of the Inventor API functionality 
and provides some additional capabilities that 
the Inventor API doesn’t have.  One of these is the ability to create copies of files and update 
the references within the files to reference the new copies. The Design Assistant utility that’s 
delivered with Inventor uses Apprentice. 

The sample uses an input XML file where you specify the “template” files, which is the original 
part and drawing, and the parameter values for each new instance you want to create. It then 
creates a new folder for each instance and using Apprentice copies the template files over using 
the new names specified in the XML file. The references between files are updated as part of 
this step. Next, it uses the Inventor API and Inventor to open the part and change the 
parameters.  Finally, it opens the drawing and allows it to update and then saves the updated 
files.  

 



 
 

 

Page 14 

Drawing Tools 

Another approach to improving the drawing creation workflow is to provide additional custom 
tools that the detailer can use to make them more productive. These kinds of tools can be very 
beneficial because they typically provide a generic capability that can be used on any drawing 
and doesn’t involve coding for a specific part or assembly. The capability that these tools all rely 
on is the drawing portion of the Inventor API. Below is a list of sample programs provided as 
part of this presentation. 

 

Title Block 

This sample helps to edit the contents of the title block. All the program is doing is editing 
iProperty values, which the title block is dependent on, but it makes it much easier for the user 
because they don’t have to understand which iProperty connects to which field in the title block. 

 

 

Custom Tables 

The API supports creating tables which allows you to write a program that takes any external 
information and create a table with it. The CreateTable sample program creates a table using 
the contents of a specified Excel file. 

 

Custom Notes 

This sample lets you predefine a large list of common notes and then lets the user choose from 
the list and places a text box with the specified notes. 
 
 

Center Dimensions  

This sample helps to automatically clean up an existing drawing by centering the text between 
the extension lines on all linear dimensions. This can be particularly useful when you’re 
parametrically editing a model that has an existing drawing but then need to clean up the 
drawing because the geometry has moved. 



 
 

 

Page 15 

Balloon Renumbering 

This program renumbers the balloons, so they are sequential beginning with the selected 
balloon and going in either a clockwise or counterclockwise direction around the drawing view.  
 

User Tools 

Inventor is delivered with a set of programs that are intended to be programming samples, but 
they also provide some useful functionality.  Several of these provide functionality specific to 
drawings. To access these tools, go to the folder shown below for the version of Inventor you’re 
using: 
 

C:\Users\Public\Documents\Autodesk\Inventor 2020\SDK 
 

In the SDK folder, there are two .msi files. These are installers that will install either the 
Developer Tools or the User Tools. Double-clicking will start the installer. Once installed you’ll 
see the Drawing Tools panel in the Add-Ins tab of the ribbon. These samples illustrate some of 
what the Inventor API is capable of. The source code is provided as part of the installation but 
unfortunately, it’s a C++ program so it will be difficult for many people to easily follow what it’s 
doing.  However, no matter what language you’re using it’s all using the same API and that add-
in could have been written in Visual Basic or C#.  
 

 

 

Drawing Automation 

The next level of automation is to automate the creation of a drawing. Essentially, you want to 
automate the steps that a detailer would go through when creating a drawing; placing drawing 
views and adding the various annotations. 

As I said before, I don’t believe it’s currently possible to create a complete and accurate drawing 
for ANY part or assembly. Many of the decisions you make when creating a drawing are very 
subjective and depend on the type of model, its shape, what needs to be shown, and company 
standards.  For example, a drawing for a complex casting is going to be very different than a 
drawing for a structural channel. The casting drawing is likely to need section views, detail 
views, auxiliary views, and notes specific to that type of model and the structural channel 
drawing will be much simpler. 



 
 

 

Page 16 

Of course, the simpler the drawing the easier it will be to automate. A program to automate the 
creation of a part drawing needs to have intimate knowledge about the part so it knows what 
views to create and what annotations to place. Even more, it needs to know details about the 
geometry so it can find the geometry to attach the annotations. If the part falls into the category 
of a “family of parts” it will likely be best to take advantage of Inventor’s parametrics and create 
the drawing manually and then just update the part and drawing as described previously. 

Let’s look at the different steps of creating a drawing and how you can accomplish them with the 
API. The AutoDrawing sample demonstrates these steps by creating the drawing below. 

 

 

  



 
 

 

Page 17 

 

Creating Sheets 

The first step in creating any drawing from scratch is creating the sheet. The API provides full 
support for creating a sheet and editing an existing sheet so you can create a sheet of any size. 
You can also add a border and title block and specify any required text input for those. 

 

Creating Views 

The API supports creating most view types. Using the API, you can get the overall size of a 
model and use that to help in determining the scale of the views.  Depending on the types of 
views you’re creating, the view creation process can be very straightforward or more 
complicated.  For example, creating a base view just involves specifying the model to place, the 
scale, orientation, style, and its position on the sheet. Optionally you can supply additional 
information like the name to assign to the view, which representations to use, a custom 
orientation, if a sheet metal part should be folded or flat, or the member name of an iPart or 
iAssembly. Some of the other view types are more complicated to create because they require 
more input. For example, a section view requires a sketch to be drawn that represents the 
section line. 

When specifying the document to place, it’s passed to the AddBaseView method as a 
Document object, not a filename, which means you need to open the document first. Typically, 
you’ll open it invisibly. This is what Inventor is doing internally when you create a drawing 
document. 

 

Creating Dimensions 

Creating dimensions is probably the most difficult part of the process. Let’s look at the simple 
example below where we want to place the dimension to show the thickness of the base. 

 

 

When I manually create this dimension, I select a curve at the bottom of the base and a curve at 
the top of the base and position the dimension. Very straightforward and easy. The method to 
place a dimension using the API is about as simple where you need to supply the two curves as 
GeometryIntput objects and the position of the dimension. The problem is how to get the two 
curves. There are several approaches that can be used to place the dimension shown above. 

 



 
 

 

Page 18 

Naming Curves – The first approach, and the one demonstrated in the AutoDrawing sample 
is to name the curves in the model and then use those names to find them later in the drawing. 
The sample uses Attributes to “name” the curves. Attributes are a way to add information to any 
entity in Inventor. Once you’ve added attributes you can quickly find those entities by using a 
search. iLogic recently added the ability to name entities. What they did was just provide a 
naming UI but internally it’s using the attribute functionality that has been in Inventor since 
Inventor 5. An alternative UI that provides access to the full capabilities of attributes is the 
Attribute Manager Utility, which you can get here: https://ekinssolutions.com/attribute_helper/. 
The “Working with Attributes” topic in the “Inventor API User’s Manual” under the “Custom Data” 
subtopic provides a good introduction. With Inventor 2020 the Attribute Manager program is 
being delivered as part of the Developer Tools installer as discussed above but you’ll always 
get the most recent version from my website. 

For the AutoDrawing sample, the Attribute Manager utility was used to add attributes to various 
edges in the model and those attributes are used to find the edges during the dimensioning 
process. This is straightforward except for determining which edges to add attributes to. The 
figures below from left to right, show the model, the model as viewed from the direction the view 
will be, the drawing view, and a rotated view of the drawing view. We can see in the rotated 
view that only the edges that are visible in that view are displayed. That means that only those 
edges are available when adding dimensions to that view. If you add an attribute to an edge on 
the back of the part and then try to get the drawing curve associated with that edge it will fail for 
that view because there isn’t a drawing curve that represents that edge. 

 

 

 

To use edges from the part in the drawing you use the DrawingView.DrawingCurves method. 
This method returns all the drawing curves in a view. However, there is an optional argument 
where you can specify which curve to return by providing a model entity. In this case, I can 
provide the edge from the model and if there is a corresponding drawing curve, the method will 
return it. When using the named entity approach, you use the attribute to find the edge in the 
part or assembly and then use that edge as input to the DrawingCurves method. Once you have 
the needed drawing curves you can create the GeometryIntent objects and place the dimension. 

The most common use of attributes is to add an attribute to an entity and then use that attribute 
to find it later, essentially naming the entity. But they’re much more powerful than that because 
you can add additional information besides just a name and can search for specific attributes by 
name and value.  

https://ekinssolutions.com/attribute_helper/


 
 

 

Page 19 

Finding Curves – A second approach is to calculate the 
position where the curve is in the part or assembly space 
and then get the equivalent location in sheet space and use 
the API to find any curves at that location. Here’s an 
example with a simple part. The coordinate in model space 
of the point indicated to the right is (5, 0, 0.5) in centimeters. 
Remember that the API ALWAYS uses centimeters because 
that’s what Inventor uses internally. The code below finds a 
curve at that location in the front view.  

' Get the drawing view to add the dimensions to. 
Dim drawView As DrawingView = sht.DrawingViews.Item(1) 
     
' The size of the part is known or you could use the API 
' to query the model and look at parameters or part geometry 
' to determine the size. In this example, it's already known. 
     
' Get a point on the sheet that's equivalent to the model location. 
Dim modelPoint As Point = tg.CreatePoint(5, 0, 0.5) 
Dim sheetPoint As Point2d = drawView.ModelToSheetSpace(modelPoint) 
     
' Find any curves at that location on the sheet. 
Dim foundCurves As ObjectsEnumerator = sht.FindUsingPoint(sheetPoint) 
     
If foundCurves.Count = 1 Then 
    ' The found curve is a drawing curve segment so we need to get the drawing curve. 
    Dim curve As DrawingCurve = foundCurves.Item(1).Parent 
         
    ' Create the GeometryIntent objects using the curve. 
    Dim geom1 As GeometryIntent  
    Dim geom2 As GeometryIntent 
    Set geom1 = sheet.CreateGeometryIntent(curve, PointIntentEnum.kEndPointIntent) 
    Set geom2 = seeht.CreateGeometryIntent(curve, PointIntentEnum.kStartPointIntent) 
 
    ' Calculate the position of the dimension text and create the dimension. 
    Dim txtPoint As Point2d = sheetPoint.Copy 
    txtPoint.X = txtPoint.X + 1 
    sheet.DrawingDimensions.GeneralDimensions.AddLinear(txtPoint, geom1, geom2) 
End If 

 

Using WorkPoints – A third approach to adding dimensions is to not use the model geometry 
at all but instead to dimension to work points. Actually, it’s not dimensioning to work points but is 
dimensioning to center points, which are created by importing a work point. Using work points 
for dimensioning is a very common approach and is the simplest and most straightforward of the 
three approaches. This technique involves adding work points to the model at any location that 
you want to dimension to. The names of the work points will be used to find them later. 

  



 
 

 

Page 20 

A big advantage of this approach is that you don’t run into the issue described above where only 
some curves are visible in certain drawing views. The work points will always be available 
regardless of the view orientation. The sample below illustrates this workflow by creating a 
dimension between the work points named “DimPoint1” and “DimPoint2”. 

 
' Get the model referenced by the drawing view. 
Dim partDoc As PartDocument 
Set partDoc = drawView.ReferencedDocumentDescriptor.ReferencedDocument 
 
' Get the two work points in the model. 
Dim wp1 As WorkPoint = partDoc.ComponentDefinition.WorkPoints.Item("DimPoint1") 
Dim wp2 As WorkPoint = partDoc.ComponentDefinition.WorkPoints.Item("DimPoint2") 
 
' Create center marks for the two work points. 
Dim cm1 As Centermark = sheet.Centermarks.AddByWorkFeature(wp1, drawView) 
Dim cm2 As Centermark = sheet.Centermarks.AddByWorkFeature(wp2, drawView) 
 
' Create GeometryIntent objects for the work points and add the dimension. 
Dim geom1 As GeometryIntent = sht.CreateGeometryIntent(cm1) 
Dim geom2 As GeometryIntent = sht.CreateGeometryIntent(cm2) 
Dim txtPoint As Point2d = tg.CreatePoint2d(10, 15) 
sht.DrawingDimensions.GeneralDimensions.AddLinear(txtPoint, geom1, geom2) 
 
' Turn off the visibility of the center marks. 
cm1.Visible = False 
cm2.Visible = False 

 

Of course, using work points only works when creating linear or angular dimensions. If you need 
to place a diameter or radial dimension you need the curve. 

Retrieving – A fourth approach is to retrieve dimensions that already exist in the model. These 
are dimension constraints that were added to a sketch or model dimensions that were added 
automatically by Inventor when features were created. This is the equivalent of the Retrieve 
Model Annotation command, as shown below. In the API, you use a combination of the 
GetRetrievableDimensions and Retrieve methods on the GeneralDimension object. 

 



 
 

 

Page 21 

In addition to retrieving dimensions from the model, you can also retrieve dimensions from a 
sketch that’s associated with a drawing view. When creating dimensions, they must be attached 
to geometry. It’s not possible to create a dimension between two arbitrary points in space. A 
workaround to this limitation is to create a sketch on the view where you want the dimension 
and create sketch points at those locations, draw a dimension constraint between the points and 
then retrieve that dimension into the drawing. 

 

Associative Draft View 

A capability of the API that is rarely used is something called an Associative Draft View. What 
this does is let you create a new drawing view that references a part or assembly but no 
geometry is drawn in the drawing view.  It’s an empty drawing view with the idea that you’ll 
create a sketch in the drawing view and draw the geometry yourself. This is typically the most 
useful for complex assemblies but can also be used for parts. The problem this solves is when 
the actual view of the assembly as Inventor would create it isn’t what you want. For example, 
you may have a complex assembly that if you create a standard drawing view becomes too 
busy to be very useful in a drawing. With this approach, you redraw the assembly using sketch 
geometry. 

It can also be used to draw a completely different representation of the model. For example, you 
might have a piping model and then use this to draw a schematic that describes the model. 

This is referred to as an “associative” draft view because there is an event that notifies you 
when changes are made to the original model so you can redraw the draft view so it’s up to date 
with the model. 

The SimpleLayout sample program demonstrates the associative draft view functionality. 


